
Computing Efficiently in QLDPC Codes

Alexander J. Malcolm,1 Andrew N. Glaudell,1 Patricio Fuentes,1 Daryus Chandra,1 Alexis

Schotte,1 Colby DeLisle,1 Rafael Haenel,1 Amir Ebrahimi,1 Joschka Roffe,1, 2 Armanda

O. Quintavalle,1, 3 Stefanie J. Beale,1 Nicholas R. Lee-Hone,1 and Stephanie Simmons1

1Photonic Inc.
2University of Edinburgh, United Kingdom

3Freie Universität Berlin, Germany
(Dated: February 11, 2025)

It is the prevailing belief that quantum error correcting techniques will be required to build a
utility-scale quantum computer able to perform computations that are out of reach of classical com-
puters. The quantum error correcting codes that have been most extensively studied and therefore
highly optimized, surface codes, are extremely resource intensive in terms of the number of physical
qubits needed. A promising alternative, quantum low-density parity check (QLDPC) codes, has
been proposed more recently. These codes are much less resource intensive, requiring up to 10x
fewer physical qubits per logical qubit than practical surface code implementations. A successful
application of QLDPC codes would therefore drastically reduce the timeline to reaching quantum
computers that can run algorithms with proven exponential speedups like Shor’s algorithm and
QPE. However to date QLDPC codes have been predominantly studied in the context of quantum
memories; there has been no known method for implementing arbitrary logical Clifford operators in
a QLDPC code proven efficient in terms of circuit depth. In combination with known methods for
implementing T gates, an efficient implementation of the Clifford group unlocks resource-efficient
universal quantum computation. In this paper, we introduce a new family of QLDPC codes that
enable efficient compilation of the full Clifford group via transversal operations. Our construction
executes any m-qubit Clifford operation in at most O(m) syndrome extraction rounds, significantly
surpassing state-of-the-art lattice surgery methods. We run circuit-level simulations of depth-126
logical circuits to show that logical operations in our QLDPC codes attains near-memory perfor-
mance. These results demonstrate that QLDPC codes are a viable means to reduce, by up to
10x, the resources required to implement all logical quantum algorithms, thereby unlocking a much
reduced timeline to commercially valuable quantum computing.

I. INTRODUCTION

Quantum computers are poised to deliver the next ma-
jor evolution in computational technology, with known
applications in several high-impact sectors, including
drug discovery, materials design, and cryptanalysis.
However, by their nature, quantum technologies are
highly susceptible to noise and are inherently incompat-
ible with classical error correction techniques, leading to
the development of unique quantum-specific error cor-
rection solutions. In quantum error correction (QEC),
physical redundancy is introduced so that errors can be
detected and corrected, ideally without harming the en-
coded information. QEC researchers have spent decades
optimizing so-called “planar” QEC codes, such as the
surface code. These codes have many positive attributes,
including nearest-neighbour connectivity for syndrome
extraction, competitive error thresholds, and a high de-
gree of symmetry. However, the physical resource re-
quirements of the surface code are of surface code error
correction are so onerous that experts have assessed that
with these codes quantum technologies capable of break-
ing RSA-2048 (a benchmark often used to assess com-
mercial utility) are likely to only arrive decades in the
future [1]. Until efficient QEC is unlocked at scale, com-
mercial quantum applications will not deliver material
value to society.

Tantalizingly, there are other QEC codes –known as

quantum low-density parity check (QLDPC) codes [2]–
that do not suffer from such high physical overheads.
These codes have many of the same positive traits that
planar codes do, leading to an explosion of interest in
them over the past few years [3–11]. However, despite
significant work in this direction [6, 9], it is not presently
known how to compile depth-efficient logical operations
in QLDPC codes. If provably efficient universal logical
gate sets were to be found for QLDPC codes, the time-
line for the availability of commercially relevant quantum
computers could be brought in by years if not decades,
owing to the reduced cost in physical qubit count.

In this paper, we propose QLDPC codes, Subsystem
HYpergraph Product Simplex (SHYPS) codes, designed
from the bottom up with logical operator implementation
as the core consideration. We construct highly symmet-
ric codes capable of implementing immense numbers of
logical gates transversally [12], facilitating arbitrary logic
with asymptotic circuit depths matching those for unen-
coded logic. This approach is generally compatible with
single-shot error correction, providing benefits in reduced
qubit-overhead, reduced decoding complexity, and faster
logical clock speeds. We demonstrate this compatibil-
ity by performing the most advanced circuit-level logical
simulation to date, demonstrating near-memory perfor-
mance for a compiled circuit derived from a randomly
sampled logical operator on 18 logical qubits.

2

II. LOGIC IN QLDPC CODES

The Clifford group is of particular interest for quantum
computation as it provides a universal gate set when com-
bined with any single non-Clifford operator. As there are
known methods for implementing non-Clifford operations
(e.g., T gates) fault-tolerantly using state injection [13],
an efficient fault-tolerant implementation of the Clifford
group for a given code is sufficient to unlock universal
computation in that code.

To date, QLDPC codes have been predominantly stud-
ied in the context of quantum memories. Various tech-
niques based on generalized lattice surgery [7, 10] have
been proposed to rework logical Clifford implementa-
tions in planar codes for application in QLDPC codes.
However, these methods often introduce substantial over-
heads in both time and space: operations are not guar-
anteed to be parallelizable, large auxiliary patches are re-
quired, and any single-shot properties [11] of the QLDPC
code can be compromised, as lattice surgery does not in-
herently support them.

In the generalized lattice surgery framework, compu-
tation is performed via joint logical operator measure-
ments. State-of-the-art schemes for QLDPC surgery [6]
measure single weight-d logical operators with overheads
of O(d) in both space and time for a single logical cycle,
where d is the code distance. A constant number of such
measurements may then be combined to implement el-
ementary Clifford gates such as CNOT, Hadamard and
Phase. It may be possible that compiling methods will
be developed to optimize depth-efficiency for these tech-
niques. However, even assuming a high degree of paral-
lelization commensurate with planar codes –which may
or may not be possible in general– direct compilation
with these elementary gates to implement a worst-case
m-qubit Clifford operator requires O(m) logical cycles,
leading to a total depth of O(md).

Recent research [8] suggests that logical Clifford ex-
ecution based on transversal gates may avoid the O(d)
overhead for a single logical cycle, allowing syndrome
information to accrue simultaneously with logical Clif-
ford execution. This indicates that a QLDPC code fam-
ily with sufficiently many transversal gates that also
exhibits single-shot capabilities might execute arbitrary
Clifford logic in lower depths with efficient decoding
strategies. We generate a new family of highly symmet-
ric QLDPC codes –Subsystem HYpergraph Product Sim-
plex (SHYPS) codes– by combining the subsystem hyper-
graph product (SHP) code construction [14] with classi-
cal simplex codes [15, Ch. 1.9], and show that for these
codes such low-depth logical Clifford implementations are
indeed possible. The SHYPS code family permits imple-
mentations of elementary Clifford gates in O(1) time with
typically zero space overhead (see Table I). However, the
chief figure of merit we analyze is the depth of a worst-
case encoded Clifford.

Using new compilation techniques, we achieve a depth-
efficient implementation of a worst-case m-qubit Clifford
in only 4m(1 + o(1)) logical cycles, each consisting of a

single depth-1 circuit followed by a depth-6 syndrome
extraction round. This is comparable to state-of-the-art
depth-efficiency, 2m + O(log2(m)), for a purely unitary
implementation of Cliffords acting on unencoded qubits
[16]. The compilation strategy employed to achieve this
low-depth implementation constructs circuits not as a se-
quence of elementary one- and two-qubit logical opera-
tions, but rather by leveraging many-qubit logical opera-
tions that occur naturally via low physical depth logical
generators. Circuit-level simulations of these compiled
circuits show near-memory performance (see Fig. 2),
demonstrating the feasibility of time-efficient logical ex-
ecution in QLDPC codes.

III. COMPILING AND COSTS

When computing in an error correction setting, logi-
cal operations are interleaved with rounds of syndrome
extraction [17]. The operators are typically drawn from
a subset of the full set of logical operations, and we will
refer to elements of this subset as logical generators. A
sequence of logical generators combine to synthesize a
logical operation that the circuit performs. To compute
efficiently in a QEC code, a generating set of (ideally
low-depth) logical generators is needed. The size of this
generating set relative to the space of logical operations
it generates informs the worst-case number of generators
needed to implement an arbitrary logical operation, and
therefore the number of syndrome extraction steps that
need to be interleaved between them. Since syndrome
extraction is costly and lengthier computations are less
desirable, the aim of compiling is to reduce the num-
ber of steps needed to implement a desired logical op-
erator. This reduction can be achieved by constructing
codes which have more native low-depth logical genera-
tors. We restrict attention to the space of the m-qubit
Clifford group, and examine the notion of efficient com-
pilation in that context to quantify the number of logical
generators needed to compute efficiently.

The size of the m-qubit Clifford group scales as

22m
2+O(m) [18] (see also Section IVA), which tends to

pose a problem for compiling with a number of logical
generators that doesn’t also grow at least exponentially in
m. Consider the case where we work with γ fixed-depth
logical generators of the m-qubit Clifford group. The set
of all circuits composed of up to depth D of these logi-
cal generators cannot produce more than (γ+1)D unique
Clifford operators. Ignoring the action of the Pauli group
(all Paulis can be pushed to the end and implemented via
a depth-1 circuit in stabilizer codes), this means we need
D to be such that

(γ + 1)D ≥ 22m
2+O(m)

to possibly produce every Clifford operator. Rearrang-
ing, this lower bounds the required depth to attain an

3

arbitrary operation in the Clifford group:

D ≥ 2m2 +m− 1

log2(γ + 1)
=: D∗. (1)

We can estimate that the fraction of total Clifford op-
erators achievable with all depths D < D∗ is 1/(γ + 1).
Since we generally consider cases where γ is a monotoni-
cally increasing function of m, asymptotically we expect
1/(γ + 1)→ 0 so that almost all Cliffords require depth
at least D∗.
Consider synthesizingm-qubit Clifford operators using

depth-1 circuits of arbitrary one- and two-qubit Clifford
gates. These circuits are fixed under conjugation by the
Clifford subgroup ⟨S,H, SWAP⟩, and a counting exercise

demonstrates that there are γ ≤ e/
√
π (10m/e)

m/2 − 1
nontrivial depth-1 circuits, up to the right action of
this subgroup. Substituting this expression into Eq. (1)
yields an asymptotic worst-case (and average-case) depth
lower bound of D ≥ 4m/ log2(10m/e) + O(1). While
there are indeed compiling algorithms that achieve depth
O(m/ log2m) asymptotically [19], the leading constants
are impractically large [16]. Rather than accept these
large overheads, researchers have derived alternative de-
compositions that achieve better depths in practice for
realistic qubit counts with worst-case depths of O(m)
[12, 16, 20, 21].

We employ an alternative decomposition (see Supple-
mentary Material XII), which focuses on minimizing the
rounds of specific subsets of Clifford gates. Every Clifford
operator can be written in the four-stage decomposition
DZ−CX−DX−DZ(1) [22], where we have defined subsets
of the Clifford group as follows:

• DZ = ⟨S,CZ⟩; Z-diagonal Cliffords,
• CX = ⟨CNOT ⟩; The CNOT group,
• DX; X-diagonal Cliffords (Hadamard-rotated DZ),
• DZ(1); depth-1 Z-diagonal operations.

Combined with a few additional insights [16], any of
the listed decompositions yield circuits with asymptotic
depths of 2m+O(log2m), which are state of the art for re-
alistic qubit counts. Compiling worst case logical circuits
on m patches of surface code with all-to-all connectivity
for an arbitrary m-qubit logical Clifford will thus require
roughly 2m logical cycles.

Having established via study of decompositions a
worst-case depth for a logical Clifford in the surface code,
we can now revisit Eq. (1) and consider the number of
logical Clifford generators we require for a different er-
ror correcting code to achieve similar efficiency. Clearly,
γ ∼ 2O(m) is necessary to achieve a logical cycle depth
of O(m). However, note that because CSS codes always
have transversal CNOT operations available as logical
generators, when using large numbers of code blocks of a
CSS code, we will always satisfy this requirement. This
holds because the number of ways to pair up code blocks
to apply cross-block operations scales exponentially in
the number of code blocks (and hence the total number

of logical qubits). Instead, we would like to capture the
compiling behavior in code families at both the “few”
code block scale and the “many” code block scale.

For b code blocks of an [n, k, d] code [23], the Clifford
compiling ratio

depth of a worst case Clifford on b · k logical qubits

b · k
captures compiling properties for an arbitrary number of
code blocks. Any code that achieves an O(1) ratio is said
to generate the logical Clifford group efficiently. A code
family with parameters [n(r), k(r), d(r)] for which every
member generates the logical Clifford group efficiently is
also said to have this feature. Any code family whose
associated compiling is such that the Clifford compiling
ratio scales with k(r) is failing to keep pace with the
surface code due to the depth of logical operations within
a code block, whereas scaling with b is associated with
overheads for compiling between code blocks.

Motivated by the advantages of computing in a code
that has many fault-tolerant logical generators of low
depth, we introduce the SHYPS code family in Section V.
This family has γ = 2O(k) logical generators for a single
code block, each implemented by a depth-1 physical cir-
cuit. Moreover, these logical generator implementations
often require 0 additional qubits, rising to at most n for
in-block CNOT operators where a scheme involving an
auxiliary code block is used [24].

In addition to possessing a sufficient number of logical
generators, the SHYPS codes achieve the desired O(1)
Clifford compiling ratio, with logical Clifford operators
across b blocks implemented fault-tolerantly in depth at
most 4bk(1 + o(1)) (see Table I). Crucially, the depth of
Clifford operations compiled in our SHYPS code frame-
work remains independent of the code distance, com-
pared to state-of-the-art lattice surgery methods where
the depth scales as O(md). For a moderately sized code
with distance d = 20, an SHYPS-compiled CNOT gate
would achieve an order-of-magnitude reduction in depth
relative to the equivalent compiled using lattice surgery
(4 vs. roughly 40). This example highlights that –in ad-
dition to reducing qubit overheads relative to the surface
code– an SHYPS-based quantum computer would pro-
vide substantially faster clock-speeds at the logical level.

Logical Gate Time cost Space cost

CNOT (cross-block) 4 0

CNOT (in-block) 4 n

S (in-block) 6 0

CZ (cross/in-block) 4 0

H (in-block) 8 0

Arbitrary b-block Clifford 4bk(1 + o(1)) bn or 0 [24]

Table I. Time and space costs for logical Clifford operations of
SHY PS(r) codes (r ≥ 4) with parameters [n, k]. For r = 3,
the logical S and H gates have depths 9 and 11, respectively.
Here, time corresponds to the number of complete syndrome
extraction rounds.

4

IV. CLIFFORD OPERATORS AND
AUTOMORPHISMS

A. Symplectic representations

The Clifford group Cn is a collection of unitary op-
erators that maps the Pauli group Pn to itself, under
conjugation. For example, the two-qubit controlled-not
operator CNOTi,j , the single-qubit phase gate Si, and
the single-qubit Hadamard gate Hi, are all Clifford oper-
ators, and in fact these suffice to generate the full group.
When considering logical operators of codes, it is con-
venient to utilise the well-known symplectic representa-
tion of Clifford operators: by definition Pn is a normal
subgroup of Cn and the quotient Cn/Pn is isomorphic to
Sp2n(2), the group of 2n×2n binary symplectic matrices
[18, Thm. 15]. Hence each Clifford operator is, up to
Pauli, specified by a unique element g ∈ Sp2n(2). That
this representation ignores Pauli factors is of no concern,
as any logical Pauli may be implemented transversally.

The following examples illustrate the symplectic rep-
resentation of some common families of Clifford opera-
tors; note that by convention we assume that elements of
Sp2n(2) act on row vectors from the right.

Example IV.1. (CNOT circuits) The collection of
CNOT circuits ⟨CNOTi,j : 1 ≤ i, j ≤ n⟩ have symplec-
tic representations{[

C 0
0 C−T

]
: C ∈ GLn(2)

}
,

where GLn(2) is the group of invertible n × n binary
matrices.

Example IV.2. (Diagonal Clifford operators) The
Clifford operators that act diagonally on the computa-
tional basis form an abelian group, generated by single-
qubit phase gates Si and the two-qubit controlled-Z gate
CZi,j . They are represented by symplectic matrices of
the form {[

In B
0 In

]
: B ∈Mn(2), B

T = B

}
,

where the diagonal and off-diagonal entries of the sym-
metric matrix B, determine the presence of S and CZ
gates, respectively.

B. Code automorphisms

Code automorphisms are permutations of the physical
qubits that preserve the codespace. They are a promis-
ing foundation for computing in QLDPC codes as they
can provide nontrivial logical operators implementable by
low-depth SWAP circuits, or simply relabelling physical
qubits. Moreover, combining automorphisms with addi-
tional transversal Clifford gates can give greater access to
fault-tolerant logical operator implementations [3, 4, 9].

Let C be an [n, k, d] CSS code with X- and Z-type
gauge generators determined by matrices GX ∈ FrX×n

2

and GZ ∈ FrZ×n
2 , respectively. The (permutation) au-

tomorphism group Aut(C) is the collection of permuta-
tions π ∈ Sn that preserve the gauge generators, and
therefore the codespace. I.e., π ∈ Aut(C) if there ex-
ist gπ,X ∈ GLrX (2) and gπ,Z ∈ GLrZ (2) such that
gπ,XGX = GXπ and gπ,ZGZ = GZπ.
The logical operator implemented by a given π ∈

Aut(C) is determined by its action on the code’s logical
Paulis. In particular, as permutations preserve the X/Z-
type of a Pauli operator, π implements a logical CNOT
circuit [25, Thm. 2]. Furthermore, following [25], a larger
set of fault-tolerant CNOT circuits across two copies of
C may be derived by conjugating the target block of the
standard transversal CNOT operator [26] by π (see Sup-
plementary Materials Fig. 3).
The symplectic representation for this combined oper-

ator is given byIn π
0 In

In 0
π−1 In

 ∈ Sp4n(2), (2)

where we identify π ∈ Aut(C) with the permutation ma-
trix in GLn(2) whose (i, j)-th entry is 1 if i = π(j), and
zero otherwise. Note that as conjugation by π simply
permutes the targets of the physical transversal CNOT,
this is a fault-tolerant circuit of depth 1. Moreover, (2)
implements a cross-block CNOT operator, with all con-
trols in the first code block of k logical qubits, and all
targets in the latter code block.
More recently, code automorphisms have been gener-

alized to include qubit permutations that exchange vec-
tors in GX and GZ . These so-called ZX-dualities lead
to low-depth logical operator implementations involving
qubit permutations and single qubit Hadamard gates [3].
Moreover, ZX-dualities allow for the construction of log-
ical diagonal Clifford operators in the following man-
ner: Let τ ∈ Sn be an involution (τ2 = 1) such that
GXτ = GZ , and suppose that π ∈ Aut(C) is such that
πτ is also an involution. Then the physical diagonal Clif-
ford operator given by[

In πτ
0 In

]
∈ Sp2n(2), (3)

is a depth-1 circuit that implements a logical diagonal
Clifford operator up to Pauli correction (see [3, 4] and
Supplementary Materials Lem. X.2). As there is always
a Pauli operator with the appropriate (anti)commutation
relations with the stabilizers and logical operators of the
code to fix any logical/stabilizer action sign issues, we
can ignore this subtlety [12].

The requirement that πτ is an involution guarantees
that the upper-right block of (3) is symmetric, and thus
corresponds to a valid diagonal Clifford operator. This
generally restricts the number of automorphisms that
may be leveraged to produce valid logical operators. Cru-
cially, this is insignificant for the SHYPS codes we intro-

5

duce in Section V, where we have sufficient symmetry
to efficiently implement all diagonal operators in a code
block.

V. CODE CONSTRUCTIONS AND LOGICAL
OPERATORS

The constructions (2) and (3) provide a framework
for implementing logical Clifford operators with fault-
tolerant, low-depth circuits. However the number of such
operators that exist for a given subsystem CSS code C
clearly scales with the size of Aut(C). This motivates a
search for quantum codes with high degrees of permuta-
tion symmetry, to achieve the number of fixed-depth Clif-
ford generators necessary for efficient compilation. There
are many methods for constructing quantum codes [27–
33], but in this work we focus on a subsystem hypergraph
product construction that allows us to leverage known
highly symmetric classical codes, to produce quantum
code automorphisms: Let Hi be parity check matrix ma-
trices for two classical (ni, ki, di)-codes with i = 1, 2 and
codespace kerHi. The subsystem hypergraph product code
[14] (SHP), denoted SHP (H1, H2), is the subsystem CSS
code with gauge generators

GX = (H1 ⊗ In2), GZ = (In1 ⊗H2),

and parameters [n1n2, k1k2,min(d1, d2)] [14, 3.B].
Now the classical codes kerHi have analogously de-

fined automorphism groups, and crucially these lift to
distinct automorphisms of SHP (H1, H2).

Lemma V.1. Let (σ1, σ2) ∈ Aut(kerH1)×Aut(kerH2).
Then σ1 ⊗ σ2 ∈ Aut(SHP (H1, H2)).

To capitalise on this, we pair the SHP construction
with the highly symmetric classical simplex codes, re-
ferring to these as subsystem hypergraph product simplex
(SHYPS) codes. A complete description of the SHYPS
family (parameterized by integers r ≥ 3) is given in Sup-
plementary Materials VIII E but we note here that each
instance, denoted SHY PS(r) has parameters

[n(r), k(r), d(r)] = [(2r − 1)2, r2, 2r−1].

Moreover, this is a QLDPC code family, as each
SHY PS(r) has weight-3 gauge generators. An imme-
diate corollary of Lemma V.1 and [15, Ch. 8.5] is that

|Aut(SHY PS(r))| ≥ |GLr(2)|2 = O(22r
2

),

which grows exponentially in the number of logical qubits
k(r) = r2, as required in Section III. By utilising these
automorphisms with the constructions outlined in Sec-
tion IVB we are able to efficiently generate all CNOT
and diagonal Clifford operators in the SHYPS codes.

The logical action of operators (2) and (3) may be
characterized explicitly: For any pair g1, g2 ∈ GLr(2)
there exists a corresponding automorphism σ1 ⊗ σ2 ∈
Aut(SHY PS(r)) such that the logical cross-block CNOT

operator
Ik g1 ⊗ g2
0 Ik

Ik 0

g−T
1 ⊗ g−T

2 Ik

 ∈ Sp4k(2), (4)

is implemented by the depth-1 physical circuit of type (2).
Furthermore, arbitrary logical CNOT circuits on b blocks
of k logical qubits can be constructed from a sequence of
2bk(1+ o(1)) such operators (see Supplementary Materi-
als Thm. IX.3 and Cor. IX.21).
To characterize the logical action of diagonal oper-

ators (3) we first observe that the physical qubits of
SHY PS(r) may be naturally arranged in an 2r−1×2r−1
array such that the reflection across the diagonal is a ZX-
duality exchanging GX and GZ (see Supplementary Ma-
terials Lem. X.2). We similarly arrange the logical qubits
in an r×r array, and denote the reflection that exchanges
rows and columns by τ . Then for all g ∈ GLr(2), there
exists σ ⊗ σT ∈ Aut(SHY PS(r)) such that the logical
diagonal Clifford operator[

I
(
g ⊗ gT

)
· τ

0 I

]
(5)

is implemented by a corresponding generator of type (3).
The operators (5) have depth 1 and are fault-tolerant
with circuit distance equal to the code distance. More-
over, they are alone sufficient to generate all logical diag-
onal Clifford operators on an SHYPS code block in depth
at most k(1+o(1)) (Supplementary Materials Thm. X.6).
For generation of the full logical Clifford group, we

note that SHY PS(r) possesses a Hadamard type [3] fold-
transversal gate whereby the logical all-qubit Hadamard
operator (up to logical SWAP) is implemented fault-
tolerantly (see Supplementary Materials Lem. X.19). By
then applying a Clifford decomposition as discussed in
Section III (see also Supplementary Materials XII), we
bound the cost of implementing an arbitrary Clifford op-
erator:

Theorem V.2. Let r ≥ 3. An arbitrary logical Clif-
ford operator on b blocks of the SHY PS(r) code may be
implemented fault-tolerantly in depth 4bk(r)(1 + o(1)).

In particular, the SHYPS codes achieve the desired
O(1) Clifford compiling ratio. Moreover this bound is
competitive with best known depths of 2bk+O(log2(bk))
for compiling Cliffords on bk unencoded qubits [16]. We
achieve further reductions in overhead for logical permu-
tations and arbitrary Hadamard circuits (see Supplemen-
tary Materials Tables II, III and IV for details).

VI. PERFORMANCE OF THE SHYPS CODE

We present numerical simulations to evaluate the
circuit-level noise performance of the SHYPS code fam-
ily. Two types of simulations were performed. First, in

6

10 210 310 410 5

p (physical error rate)

10 1

10 2

10 3

10 4

10 5

10 6

p L
 (l

og
ica

l e
rro

r r
at

e
pe

r r
ou

nd
)

Memory Simulations for Surface and SHYPS Codes
[[225, 9, 4]] Surface - Full Graph - MWPM
[[1808, 16, 8]] Surface - Full Graph - MWPM
[49, 9, 4] SHYPS - (2, 1) Sliding Window - BPOSD0
[225, 16, 8] SHYPS - (2, 1) Sliding Window - BPOSD0
Unencoded

Figure 1. Simulation results for quantum memories under
circuit-level noise for SHYPS and surface codes. For these
simulations, only Z-type detectors are used.

section VIA, memory simulations for two different in-
stances of SHYPS codes are benchmarked against com-
parably scaled surface codes. Second, in section VIB,
we present a circuit-level noise logic simulation on two
blocks of the [49, 9, 4] SHYPS code. The logical oper-
ators are randomly sampled from the 18 qubit Clifford
group and synthesized into low-depth generators using
the techniques explained in Section V. For a more de-
tailed treatment of the simulations presented in this sec-
tion, see Supplementary Materials XIII.

A. Memory Simulation

Figure 1 shows the normalized logical error rate pL
from memory simulations with d syndrome extraction
rounds. The logical error rates for the scaled surface
codes are adjusted according to the number of logical
qubits [34] to demonstrate that the [49, 9, 4] SHYPS code
is competitive with the surface code of the same dis-
tance while requiring fewer physical qubits per logical
qubit. The pseudo-threshold of the [49, 9, 4] SHYPS code
matches that of the [[225, 9, 4]] scaled distance-4 surface
code, approximately at p = 0.08%, in addition to us-
ing only 1/5 of the physical qubits. In addition, the
[225, 16, 8] SHYPS code outperforms the [[225, 9, 4]] sur-
face code both in pseudo-threshold and error correction
slope for an equivalent number of physical qubits. Per-
formance of the [225, 16, 8] SHYPS code is comparable to
that of the [[1808, 16, 8]] scaled distance-8 surface code,
albeit with a lower pseudo-threshold. We anticipate that
a decoder specifically tailored to SHYPS codes would fur-
ther improve the pseudo-threshold.

Most impressively, the SHYPS code simulations rely on
a sliding window decoding approach with a small window
size (2) and commit size (1). The use of a (2,1) sliding
window decoder to achieve a high error correction per-
formance is consistent with single-shot properties –the
ability to decode based on a single syndrome extraction
round between each logical operation.

10 310 410 510 6

p (physical error rate)

10 2

10 3

10 4

10 5

10 6

10 7

p L
 (l

og
ica

l e
rro

r r
at

e
pe

r r
ou

nd
)

Memory and Clifford Circuit Simulations of [49, 9, 4] SHYPS Code
Depth-63 Clifford Simulation
Depth-4 Memory Simulation
Unencoded

Figure 2. Simulation results for a depth-126 logical quan-
tum circuit and a memory on two code blocks of the [49, 9, 4]
SHYPS code. Z- and X-type detectors are used in both cases.

B. Clifford Simulation

We now apply our decomposition and logical gener-
ator constructions in a simulation of a randomly sam-
pled Clifford operator on 18 logical qubits in two code
blocks of the [49, 9, 4] SHYPS code, up to an in-block
CNOT circuit. This prevents the need to use extra aux-
iliary code blocks to implement in-block CNOTs while
ensuring all types of transversal operations appear in the
simulation. Synthesizing the sampled Clifford using the
DZ−CX−DX−DZ(1) decomposition requires 63 fault-
tolerant logical generators, and consequently a total of
126 logical generators to implement both the Clifford cir-
cuit and its inverse. The simulation proceeds as follows:
initialize both code blocks in the encoded all-zero logical
state; interleave each logical generator (both of the Clif-
ford and its inverse) with gauge generator measurements;
read out the state using a transversal Z measurement.
Figure 2 shows the normalized logical error rate pL for

the described simulation. Decoding with a (3, 1) slid-
ing window decoder attains beyond break-even perfor-
mance with a pseudo-threshold of p = 0.0185%. We also
include the logical error rate per syndrome extraction
round for a d-round SHYPS quantum memory simula-
tion with 18 logical qubits. Simulation of the Clifford
operator achieves near-memory error correction perfor-
mance in terms of error suppression, demonstrating that
logical operations can be executed efficiently and fault-
tolerantly in SHYPS codes.

VII. CONCLUSION

QLDPC codes promise to reduce physical qubit over-
heads compared to existing surface codes. Despite their
advantage as memories, it has been unclear whether any
multi-logical qubit code (QLDPC or otherwise) could ex-
ecute logical operations with as much parallelism as a
surface code. Were this to remain unresolved, it may
have crippled the speed of any QLDPC-code-based quan-
tum computer when running highly-parallel circuits. By
using a product construction of highly-symmetric classi-
cal simplex codes alongside novel compiling methods, we

7

have shown that the resultant SHYPS code family shat-
ters this barrier, achieving the same asymptotic logical
circuit depth as unencoded circuits under state-of-the-art
algorithms. Remarkably, the resulting logical circuits re-
tain strong fault-tolerance guarantees that are reflected
in deep logical simulations showing near-memory perfor-
mance even under circuit-level noise.

Two critical directions demand further exploration.
Developing QEC codes with analogous properties but
even better rates would enable further space improve-
ments without making a time trade-off. More signifi-
cantly, extending compiling parallelism to measurement

parallelism would unlock for QLDPC codes every trick
the surface code has at its disposal for reducing run-times
via auxiliary code blocks. Without these advantages in
parallelism, the reasons to consider using the surface code
over QLDPC codes reduces to two factors: connectivity
and simplicity. For any architecture where the necessary
connectivity is achievable, it now seems all but certain:
QLDPC codes are capable of driving down physical over-
heads without increasing time overheads, and, as a result
of this work, appear to be the most compelling path to
quantum computers that can perform commercially rel-
evant algorithms.

[1] M. Mosca and M. Piani, 2022 Quantum Threat Timeline
Report , Tech. Rep.

[2] Note that throughout this paper we follow the conven-
tion of the field and implicitly exclude surface codes from
consideration when discussing QLDPC codes, instead fo-
cusing on codes with higher encoding rate that meet the
LDPC criteria.

[3] N. P. Breuckmann and S. Burton, Quantum 8, 1372
(2024).

[4] J. N. Eberhardt and V. Steffan, Logical operators and
fold-transversal gates of bivariate bicycle codes (2024),
arXiv:2407.03973 [quant-ph].

[5] A. Gong, S. Cammerer, and J. M. Renes, Toward low-
latency iterative decoding of QLDPC codes under circuit-
level noise (2024), arXiv:2403.18901 [quant-ph].

[6] A. Cross, Z. He, P. Rall, and T. Yoder, Improved QLDPC
Surgery: Logical Measurements and Bridging Codes
(2024), arXiv:2407.18393 [quant-ph].

[7] A. Cowtan and S. Burton, Quantum 8, 1344 (2024).
[8] H. Zhou, C. Zhao, M. Cain, D. Bluvstein, C. Ducker-

ing, H.-Y. Hu, S.-T. Wang, A. Kubica, and M. D. Lukin,
Algorithmic fault tolerance for fast quantum computing
(2024), arXiv:2406.17653 [quant-ph].

[9] A. O. Quintavalle, P. Webster, and M. Vasmer, Quantum
7, 1153 (2023).

[10] L. Z. Cohen, I. H. Kim, S. D. Bartlett, and B. J. Brown,
Science Advances 8, eabn1717 (2022), 2110.10794.

[11] A. O. Quintavalle, M. Vasmer, J. Roffe, and E. T. Camp-
bell, PRX Quantum 2, 020340 (2021).

[12] H. Sayginel, S. Koutsioumpas, M. Webster, A. Rajput,
and D. E. Browne, Fault-Tolerant Logical Clifford Gates
from Code Automorphisms (2024), arXiv:2409.18175
[quant-ph].

[13] D. Litinski, Quantum 3, 205 (2019).
[14] M. Li and T. J. Yoder, in Proceedings of IEEE Inter-

national Conference on Quantum Computing and Engi-
neering (QCE) (IEEE, 2020) pp. 109–119.

[15] F. MacWilliams and N. Sloane, The Theory of Error-
Correcting Codes, 2nd ed. (North-holland Publishing
Company, 1978).

[16] D. Maslov and B. Zindorf, IEEE Transactions on Quan-
tum Engineering 3, 1 (2022).

[17] Syndrome extraction results inform error correction, and
corrections are often tracked in software and folded into
the operators applied later in the circuit. For the pur-
poses of this discussion, we restrict attention to syndrome

extraction as this is the piece that is costly in terms of
operations applied to qubits.

[18] N. Rengaswamy, R. Calderbank, H. D. Pfister, and
S. Kadhe, in Proceedings of IEEE International Sympo-
sium on Information Theory (ISIT) (IEEE, 2018) pp.
791–795.

[19] J. Jiang, X. Sun, S.-H. Teng, B. Wu, K. Wu, and
J. Zhang, in Proceedings of the Fourteenth Annual ACM-
SIAM Symposium on Discrete Algorithms (SIAM, 2020)
pp. 213–229.

[20] S. Bravyi and D. Maslov, IEEE Transactions on Infor-
mation Theory 67, 4546 (2021).

[21] R. Duncan, A. Kissinger, S. Perdrix, and J. Van De We-
tering, Quantum 4, 279 (2020).

[22] The order of DZ(1), CX, DX can be exchanged to any of
its six permutations up to exchanging DZ(1) with DX(1)
and/or moving those layers from the front to the back
so that there are really 12 related decompositions. This
freedom in reordering allows compilers to leverage inter-
action with neighbouring T gates effectively.

[23] Throughout this paper, we adopt the following notation
for error-correcting codes to ensure clarity: (n, k, d) for
classical codes, [n, k, d] for subsystem codes, and [[n, k, d]]
for stabilizer codes.

[24] There exist methods to remove the need for this addi-
tional auxiliary block with the same asymptotic cost, but
the actual circuit length tends to be larger in the low code
block regime.

[25] M. Grassl and M. Roetteler, in Proceedings of IEEE In-
ternational Symposium on Information Theory (ISIT)
(IEEE, 2013) pp. 534–538.

[26] The physical transversal CNOT operator implements log-
ical transversal CNOT in any subsystem CSS code [35,
Sec. 5].

[27] A. R. Calderbank and P. W. Shor, Phys. Rev. A 54, 1098
(1996).

[28] J.-P. Tillich and G. Zémor, IEEE Transactions on Infor-
mation Theory 60, 1193 (2013).

[29] P. Panteleev and G. Kalachev, IEEE Transactions on In-
formation Theory 68, 213 (2021).

[30] N. P. Breuckmann and J. N. Eberhardt, PRX Quantum
2, 10.1103/prxquantum.2.040101 (2021).

[31] N. P. Breuckmann and J. N. Eberhardt, IEEE Transac-
tions on Information Theory 67, 6653 (2021).

[32] P. Panteleev and G. Kalachev, in Proceedings of the 54th
Annual ACM SIGACT Symposium on Theory of Com-

https://globalriskinstitute.org/publication/2022-quantum-threat-timeline-report/
https://globalriskinstitute.org/publication/2022-quantum-threat-timeline-report/
https://doi.org/10.22331/q-2024-06-13-1372
https://doi.org/10.22331/q-2024-06-13-1372
https://arxiv.org/abs/2407.03973
https://arxiv.org/abs/2407.03973
https://arxiv.org/abs/2407.03973
https://arxiv.org/abs/2403.18901
https://arxiv.org/abs/2403.18901
https://arxiv.org/abs/2403.18901
https://arxiv.org/abs/2403.18901
https://arxiv.org/abs/2407.18393
https://arxiv.org/abs/2407.18393
https://arxiv.org/abs/2407.18393
https://doi.org/10.22331/q-2024-05-14-1344
https://arxiv.org/abs/2406.17653
https://arxiv.org/abs/2406.17653
https://doi.org/10.22331/q-2023-10-24-1153
https://doi.org/10.22331/q-2023-10-24-1153
https://doi.org/10.1126/sciadv.abn1717
https://arxiv.org/abs/2110.10794
https://arxiv.org/abs/2409.18175
https://arxiv.org/abs/2409.18175
https://arxiv.org/abs/2409.18175
https://arxiv.org/abs/2409.18175
https://doi.org/10.22331/q-2019-12-02-205
https://doi.org/10.1109/TQE.2022.3180900
https://doi.org/10.1109/TQE.2022.3180900
https://doi.org/10.1109/ISIT.2018.8437652
https://doi.org/10.1109/ISIT.2018.8437652
https://doi.org/10.1109/isit.2013.6620283
https://doi.org/10.1109/isit.2013.6620283
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1103/prxquantum.2.040101

8

puting (ACM, 2022) pp. 375–388.
[33] S. Bravyi, A. W. Cross, J. M. Gambetta, D. Maslov,

P. Rall, and T. J. Yoder, Nature 627, 778–782 (2024).
[34] Note that this is equivalent to considering multiple

distance-d surface code patches required to provide the
same number of logical qubits as the distance d SHYPS
code.

[35] P. W. Shor, Fault-tolerant quantum computation (1997),
arXiv:quant-ph/9605011 [quant-ph].

END NOTES

Acknowledgements

We thank Polina Bychkova, Zach Schaller, Bogdan
Reznychenko, and Kyle Wamer for their contributions
to the development of simulation infrastructure.

Author contributions

A.J.M. and A.N.G. designed the quantum codes
studied in this manuscript. The depth costing of logical
operators was done by A.J.M., A.S. and A.N.G.. D.C.,
P.F., J.R. and A.O.Q. designed the sliding window
decoder and optimized decoder parameters used in
the circuit-level numerical simulations. P.F., D.C.,
J.R., A.O.Q., and A.N.G. performed the numerical
simulations and post-processed the resulting data. The
software used for these simulations was designed and
written by C.D., R.H., A.E., P.F., J.R., and D.C..
A.J.M., A.N.G., P.F., D.C., A.S., J.R., A.O.Q., S.J.B.,
N.R.L.-H. and S.S. contributed to writing and editing
the manuscript.

Competing interests

US Provisional Patent Applications 63/670,626 and
63/670,620 (filed on 12 July 2024, naming A.J.M. and
A.N.G. as co-inventors), and US Provisional Patent Ap-
plication 63/720,973 (filed on November 15, 2024, nam-
ing A.N.G. and A.S as co-inventors) contain technical
aspects from this paper.

Additional information

Supplementary Information is available for this
paper. Correspondence and requests for materi-
als should be addressed to Stephanie Simmons at
ssimmons@photonic.com.

https://doi.org/10.1038/s41586-024-07107-7
https://arxiv.org/abs/quant-ph/9605011
https://arxiv.org/abs/quant-ph/9605011

9

Supplementary Material

CONTENTS

I. Introduction 1

II. Logic in QLDPC Codes 2

III. Compiling and Costs 2

IV. Clifford operators and automorphisms 4
A. Symplectic representations 4
B. Code automorphisms 4

V. Code constructions and logical operators 5

VI. Performance of the SHYPS Code 5
A. Memory Simulation 6
B. Clifford Simulation 6

VII. Conclusion 6

References 7

End notes 8
Acknowledgements 8
Author contributions 8
Competing interests 8
Additional information 8

VIII. Mathematical preliminaries and code
constructions 9
A. Review of Paulis and Cliffords 10
B. Subsystem codes 11
C. Automorphisms of codes 11
D. Classical simplex codes 12
E. Subsystem hypergraph product simplex

(SHYPS) codes 13
F. Lifting classical automorphisms 14

IX. CNOT operators in SHYPS codes 15
A. Generating cross-block CNOT operators 15
B. Arbitrary CNOT operators 19

X. Diagonal operators in SHYPS codes 21
A. Lifting classical automorphisms 21
B. Generating in-block operators 23
C. Compiling specific operators 26
D. Multi-block diagonal Cliffords 27

XI. Hadamard-SWAP operators in SHYPS codes 29
A. In-block permutations 29
B. Multi-block permutations 30
C. Hadamard circuits 31

XII. SHYPS compiling summary 33

XIII. Fault-tolerant demonstration 35

A. Numerical simulations 35
1. Memory simulations 35

Detector considerations 37
2. Simulations of logical operation 37

Detector discovery for logical circuits 37
B. Syndrome extraction circuits 37

1. Circuit fault analysis 37
2. Scheduling SE for SHYPS codes 38

Structure-based scheduling 38
Coloration circuit approach 38
Depth optimality of SE circuits 39

3. Stabilizer aggregation for SHYPS codes 39
C. Monte Carlo simulation data 39

1. Uncertainties of simulation results 39
2. Normalizing and scaling logical error

rates 40
D. Decoding details 40

1. BPOSD 40
BPOSD parameters 41

2. Sliding window decoder 41
E. Additional simulation results 42

References 43

The supplementary material is broken into 3 parts.
First, in Section VIII we survey the necessary background
information to introduce our new code family, the subsys-
tem hypergraph product simplex codes (SHYPS) codes. In
particular, we discuss the notion of code automorphisms,
and how the subsystem hypergraph product construction
yields highly symmetric quantum codes, from well chosen
classical inputs.
Next, in Sections IX-XI we demonstrate how automor-

phisms of the SHYPS codes can be leveraged to obtain
low-depth implementations of logical Clifford operators.
Taking each of the CNOT, diagonal, and Hadamard-
SWAP families in turn, we produce fault-tolerant gener-
ators (typically physical depth 1), and demonstrate effi-
cient compilation of arbitrary operators. Utilising a novel
decomposition of Clifford operators, these results are
combined in Section XII to yield an overarching bound on
the depth of Clifford implementations in SHYPS codes.
We refer the reader to Tables II, III and IV, for a detailed
summary of results.
Lastly, in Section XIII we discuss syndrome extraction

and decoding of the SHYPS codes, and we provide details
about our numerical simulations.

VIII. MATHEMATICAL PRELIMINARIES AND
CODE CONSTRUCTIONS

We begin the preliminaries section with a review of the
Pauli and Clifford groups, including the binary symplec-
tic representation and examples of key types of Clifford
operations that will be the focus of later sections.

10

A. Review of Paulis and Cliffords

The Pauli group on n qubits is defined as

Pn := ⟨i, Xj , Zj | j ∈ {1, . . . , n}⟩
= ⟨Xj , Yj , Zj | j ∈ {1, . . . , n}⟩.

For many applications, it is convenient to ignore global
phases involved in Pauli operators and instead consider
elements of the phaseless Pauli group, Pn/ ⟨i⟩. The
phaseless Pauli group is abelian and has order 4n. Addi-
tionally, every non-trivial element has order 2, and hence
Pn/ ⟨i⟩ ∼= F2n

2 . This isomorphism can be made explicit
in the following manner: as XZ = iY , any P ∈ Pn/ ⟨i⟩
may be written uniquely as

n∏
i=1

Xui
i Zvi

i =: XuZv,

where u = (u1, . . . , un) ∈ Fn
2 , and v is defined analo-

gously. The combined vector (u | v) ∈ F2n
2 is known as

the binary symplectic representation of P . We equip F2n
2

with a symplectic form ω : F2n
2 × F2n

2 −→ F2 such that
for (u | v), (s | t) ∈ F2n

2 ,

(u | v), (s | t) 7→ utT + svT .

This form captures the (anti-)commutativity of Paulis
(that is lost when global phases are ignored), as XuZv

and XsZt anti-commute if and only if

ω((u | v), (s | t)) = 1.

For example in P2, the element X1 anti-commutes with
Y1Z2, and we check that

X1 7→ (1, 0, 0, 0)

Y1Z2 ∼ X1Z1 · Z2 7→ (1, 0, 1, 1),

and

ω((1, 0, 0, 0), (1, 0, 1, 1)) = 1.

The Clifford group on n qubits, denoted Clifn, is the
normalizer of the n-qubit Pauli group within U(n). I.e.,

Clifn := NU(n)(Pn)

= {g ∈ U(n) : gPg−1 ∈ Pn for all P ∈ Pn} .
For example, the two-qubit controlled-not operator
CNOTi,j , the single-qubit phase gate Si, and the single-
qubit Hadamard gate Hi, are all Clifford operators. Fur-
ther examples include all gates of the form eiθI, but as
the global phase is typically unimportant we restrict our
attention to

Cn := Clifn/{eiθ} ×
〈
1 + i√

2

〉
.

We likewise refer to this as the Clifford group, and note
that

Cn = ⟨CNOTi,j , Si, Hi : 1 ≤ i, j ≤ n⟩ .

The action of a Clifford operator via conjugation cor-
responds to a linear transformation of F2n

2 in the binary
symplectic representation. Moreover, as conjugation pre-
serves the (anti-)commutation of of Pauli operators, the
corresponding linear transformations preserve the sym-
plectic form. The collection of such linear transforma-
tions is known as the symplectic group and is denoted
Sp2n(2). Finally, observe that Pn ≤ Cn but that conju-
gation by a Pauli operator induces at most a change of
sign, which is ignored by the binary symplectic represen-
tation. Taking the quotient by this trivial action, we see
that Cn/Pn

∼= Sp2n(2) [1, Thm. 15].

The representation of Clifford operators by 2n × 2n
binary matrices is key to the efficient simulation of sta-
bilizer circuits [2]. Moreover, as we’ll demonstrate, it is
a useful framework for synthesising efficient implemen-
tations of logical operators in quantum codes (see also
[1]).

We conclude this section with an explicit construction
of some symplectic representations for Clifford operators.
Following [2], we assume that matrices in Sp2n(2) act on
row vectors from the right. I.e., given P ∈ Pn with binary
symplectic representation (u | v), and g ∈ Cn/Pn with
binary symplectic representation G, we have gPg−1 ←→
(u | v)G. In particular, the images of the Pauli basis
Xi, Zi, are given by the ith and (i + n)th rows of G,
respectively.

Example VIII.1. (CNOT circuits) As CNOT circuits
map X-type Paulis to other X-type Paulis (and similar
for Z-type), in Sp2n(2) they have the form

{
(
C 0
0 C−T

)
: C ∈ GLn(2)}.

For simplicity we typically describe such operators solely
by the matrix C.

For example, CNOT1,2 ∈ C3 has C defined as follows1 1 0
0 1 0
0 0 1

 ∈ GL3(2).

Example VIII.2. (Diagonal Clifford operators) The
Clifford operators that act diagonally on the computa-
tional basis form an abelian group, generated by single-
qubit phase gates Si and the two-qubit controlled-Z gate
CZi,j . Hence, modulo Paulis, they are represented by
symplectic matrices of the form

{
(
I B
0 I

)
: B ∈Mk(2), B

T = B},

where the diagonal and off-diagonal entries of the sym-
metric matrix B determine the presence of S and CZ
gates, respectively.

11

For example, S1 · CZ1,2 ∈ C2 corresponds to1 0 1 1
0 1 1 0
0 0 1 0
0 0 0 1

 ∈ Sp4(2).
And the action of this example on a Pauli, X1,

(S1 · CZ1,2) ·X1 · (S1 · CZ1,2)
−1 = Y1Z2

corresponds to

(1, 0, 0, 0) ·

1 0 1 1
0 1 1 0
0 0 1 0
0 0 0 1

 = (1, 0, 1, 1).

Example VIII.3. (Hadamard circuits) In Sp2n(2),
Hadamard circuits Hv =

∏
Hvi

i have the form

{
(
In + diag(v) diag(v)

diag(v) In + diag(v)

)
: v ∈ Fn

2},

where diag(v) is the diagonal matrix with entries
v1, . . . , vn.
For example, the transversal Hadamard operator

H⊗3 = H(1,1,1) ∈ C3 corresponds to(
0 I3
I3 0

)
∈ Sp6(2).

B. Subsystem codes

A quantum stabilizer code on n physical qubits is the
common +1 eigenspace of a chosen abelian subgroup
S ≤ Pn with −I ̸∈ S. The subgroup S is known as the
stabilizer group, and moreover if S admits a set of gen-
erators that are either X-type or Z-type Pauli strings,
then the code is called CSS [3]. Quantum subsystem
codes are the natural generalisation of stabilizer codes,
in that they are defined with respect to a generic sub-
group G ≤ Pn known as the gauge group [4]. Moreover,
subsystem codes are typically interpreted as the subsys-
tem of a larger stabilizer code whereby a subset of the
logical qubits are chosen to not store information and the
action of the corresponding logical operators is ignored.
More formally, given gauge group G, the corresponding
stabilizer group S is the centre of G modulo phases

⟨S, iI⟩ = Z(G) := CPn
(G) ∩ G.

Phases are purposefully excluded (in particular, −I /∈ S)
to ensure the fixed point space of S is nontrivial, and said
space decomposes into a tensor product CL ⊗ CG , where
elements of G\S fix only CL. The subspaces CL and CG
are said to contain the logical qubits, and gauge qubits,
respectively.

The logical operators of the subsystem code are differ-
entiated into two types, based on their action on CL⊗CG :
those given by CPn

(G)\G that act nontrivially only on
CL are known as bare logical operators. Whereas oper-
ators acting nontrivially on both CL and CG are known
as dressed logical operators, and are given by CPn

(S)\G.
Note that a dressed logical operator is a bare logical op-
erator multiplied by an element of G\S. The minimum
distance d of the subsystem code is the minimal weight
Pauli that acts nontrivially on the logical qubits CL, i.e.,
the minimum weight of a dressed logical operator

d = min{|P | : P ∈ CPn
(S)\G}.

We say that a subsystem code is an [n, k, d] code if it uses
n physical qubits to encode k logical qubits with distance
d. The notation [n, k, g, d] that additionally indicates the
number of gauge qubits g, is also commonplace (but un-
used throughout this paper).

The advantages of subsystem codes are most evident
when the gauge group G has a generating set composed of
low-weight operators but the stabilizer group S consists
of high-weight Paulis. Measuring the former operators
requires circuits of lower depth (therefore reducing com-
putational overheads), and the measurement results can
be aggregated to infer the stabilizer eigenvalues. In fact,
for the codes considered here, the difference in the sta-
bilizer weights and gauge operator weights is a factor of
the code distance (see Section XIII for more details). We
note that it is exactly the measurement of operators in
G\S that act nontrivially on CG , that prevents the gauge
qubits from storing information during computation, as
these measurements impact the state of CG .
In this work we restrict our attention to [n, k, d]-

subsystem codes that are also of CSS type, with X-
and Z-type gauge generators determined by matrices
GX ∈ FrX×n

2 and GZ ∈ FrZ×n
2 , respectively. Here each

vector v ∈ Fn
2 ∩RowSpace(GX) denotes an X-type gauge

operator Xv, with Z-type gauge generators similarly de-
fined. The associated stabilizers will also be of CSS type,
and denoted by SX , SZ .

C. Automorphisms of codes

Code automorphisms are a promising foundation for
computing in QLDPC codes as they can provide non-
trivial logical operators implementable by permuting, or
in practice simply relabelling, physical qubits. In this
section, we review permutation automorphisms of classi-
cal and quantum codes, which will serve as the backbone
of our logical operation constructions.

Let’s first set some notation: given a permutation
σ ∈ Sn of the symbols {1, 2, . . . , n} in cycle notation,
we identify σ with the permutation matrix whose (i, j)th

12

entry is 1 if i = σ(j), and zero otherwise. For example

(1, 2, 3)(4, 5) ∈ S5 7→

0 0 1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

 .

The permutation defined above maps the initial indices
{1, 2, 3, 4, 5} to {2, 3, 1, 5, 4}. So given a standard basis
vector ei ∈ Fn

2 , σ acts on row vectors on the right as eiσ =
eσ−1(i), and on column vectors on the left as σeTi = eTσ(i).

Definition VIII.4. Let C be an (n, k, d)-classical lin-

ear code described by a generator matrix G ∈ Fk×n
2 .

Then the (permutation) automorphism group Aut(C) is
the collection of permutations σ ∈ Sn that preserve the
codespace. I.e., σ ∈ Aut(C) if for all c = (c1, . . . , cn) ∈
C,

cσ = (cσ(1), . . . , cσ(n)) ∈ C. (6)

As C is linear, it suffices to check (6) on the basis given
by the rows of G. Hence σ ∈ Aut(C) if and only if there
exists a corresponding gσ ∈ GLk(2) such that Gσ = gσG
[5, Lem. 8.12]. In particular, gσ represents the invertible
linear transformation of the k logical bits, induced by the
permutation.

The parity checks of the code C are similarly trans-
formed by automorphisms: letting C⊥ denote the dual
classical code, we have Aut(C) = Aut(C⊥) [5, Sec. 8.5].

So given a parity check matrix H ∈ F(n−k)×n
2 for C

we have equivalently that σ ∈ Aut(C) if there exists
hσ ∈ GLn−k(2) such that Hσ = hσH.
This definition extends naturally to quantum codes:

Definition VIII.5. Let C be an [n, k, d] (CSS) subsys-
tem code with X and Z type gauge generators deter-
mined by GX ∈ FrX×n

2 and GZ ∈ FrZ×n
2 , respectively.

Then Aut(C) consists of permutations that preserve the
gauge generators, i.e., σ ∈ Sn such that

gσ,XGX = GXσ, gσ,ZGZ = GZσ,

for some gσ,X ∈ GLrX (2) and gσ,Z ∈ GLrZ (2).

The logical operator implemented by σ ∈ Aut(C) is
determined by the permutation action on the code’s log-
ical Pauli operators. In particular, σ always gives rise to
a permutation of the logical computational basis states
of C corresponding to a logical CNOT circuit [6, Thm.
2].

In later sections we outline quantum constructions util-
ising classical codes, and consequently how classical auto-
morphisms may be leveraged to produce quantum logical
operators. In these instances, the logical CNOT imple-
mented by the quantum code automorphism is a function
of the associated classical linear transformations. This
motivates an investigation of classical codes with high
degrees of symmetry.

D. Classical simplex codes

Let r ≥ 3 and define nr = 2r − 1, dr = 2r−1. The
classical simplex codes, denoted C(r) are a family of
(nr, r, dr)-linear codes, that are dual to the well-known
Hamming codes. More specifically, we consider C(r) with
respect to a particular choice of parity check matrix: for
each 3 ≤ r < 500 [7], there exists a three term poly-
nomial h(x) = 1 + xa + xb ∈ F2[x]/ ⟨xnr − 1⟩ such that
gcd(h(x), xnr − 1) is a primitive polynomial of degree r
[8]. Then the nr × nr matrix

H =

h(x)
xh(x)

...
xnr−1h(x)

is a parity check matrix (PCM) for C(r) [5, Lem. 7.5],
where here we adopt the usual polynomial notation for
cyclic matrices

nr−1∑
i=0

aix
i mod xnr − 1 7→ (a0, a1, . . . , anr−1) ∈ Fnr

2 .

Note there are many alternative choices for the PCM of
C(r); in fact H chosen here has greater than nr − r rows
and so this description contains redundancy. However
what the choice above guarantees is that each row and
column of H has weight 3, leading to low-weight gauge
generators and optimal syndrome extraction scheduling,
of an associated quantum code (see Section XIII).

The simplex codes are examples of highly symmetric
classical codes with large automorphism groups.

Lemma VIII.6. The automorphism group of the sim-
plex codes are as follows:

Aut(C(r)) ∼= GLr(2).

Intuitively, Lemma VIII.6 means that each invertible
linear transformation g ∈ GLr(2) of the r logical bits,
is implemented by a distinct permutation σ of the nr
physical bits [5, Ch. 8.5].

Example VIII.7. Let r = 3. The polynomial h(x) =
1+x2+x3 is primitive and hence the overcomplete parity
check matrix

H =

1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1
1 0 0 0 1 0 1
1 1 0 0 0 1 0
0 1 1 0 0 0 1

defines the (7, 3, 4)-simplex code. A basis for C(3) is

13

given by the rows of generator matrix

G =

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 , (7)

and we observe that1 1 0
0 1 0
0 0 1

 ·G = G · (2, 4)(5, 6).

I.e., the bit permutation (2, 4)(5, 6) ∈ Aut(C(3)) induces
the linear transformation

(v1, v2, v3) 7→ (v1 + v2, v2, v3)

on the 3 logical bits (v1, v2, v3) ∈ F3
2.

In the remainder of this work, we assume that all parity
check matrices H ∈ Fnr×nr

2 for the classical simplex code
are taken as above.

E. Subsystem hypergraph product simplex
(SHYPS) codes

Here we describe our main quantum code construction,
namely the subsystem hypergraph product simplex code, in
greater detail.

Definition VIII.8. Let r ≥ 3, nr = 2r − 1, dr = 2r−1,
and let Hr be the parity check matrix for the (nr, r, dr)-
classical simplex code. Then the subsystem hypergraph
product of two copies of Hr, denoted SHY PS(r), is the
subsystem CSS code with gauge generators

GX = (H ⊗ Inr
), GZ = (Inr

⊗H).

We call SHY PS(r) the subsystem hypergraph product
simplex code.

It’s clear by definition that the row/column weights of
GX and GZ match those of H, and so the SHY PS(r)
codes are a QLDPC code family with gauge generators
of weight 3. Moreover, the gauge generators have a par-
ticular geometric structure: we arrange the n2r physi-
cal qubits of SHY PS(r) in an nr × nr array with row
major ordering, such that for standard basis vectors
⟨e1, . . . , enr

⟩ = Fnr
2 , the vector ei ⊗ ej corresponds to

the (i, j)th position of the nr × nr qubit array. For ex-
ample, the first row of H given in Example VIII.7 is
r1 = e1 + e3 + e4 and hence the first row r1 ⊗ e1 ∈ GX

indicates an X-type gauge generator supported on the
vector

r1 ⊗ e1 = e1 ⊗ e1 + e3 ⊗ e1 + e4 ⊗ e1,

i.e., on the (1, 1), (3, 1) and (4, 1) qubits of the array. It
follows that gauge generators in GX (respectively GZ)

are supported on single columns (respectively rows) of
the qubit array.
We follow [9, Sec. 3B] to describe the parameters

[n, k, d] of SHY PS(r): firstly recall from the above that
n = n2r. Next, to calculate the number of encoded qubits
k, observe that the the Pauli operators that commute
with all gauge generators, are generated by

LX = (Inr
⊗G), LZ = (G⊗ Inr

). (8)

Here G is a chosen generator matrix for the classical sim-
plex code (so in particular G is a matrix of rank r such
that HGT = 0).
The centre of the gauge group ⟨GX , GZ⟩ determines

the stabilizers of a subsystem code. In particular, for
SHY PS(r) these are generated by

SX = (H ⊗G), SZ = (G⊗H).

Finally, k is calculated by comparing the ranks of LX

and SX :

k = rankLX − rankSX

= nr · r − (nr − r) · r
= r2.

More specifically, RowSpan(LX\SX) determines the
space of logical X-operators, with logical Z-operators de-
fined similarly. However, as indicated in Section VIII B,
we consider the action of these operators up to multi-
plication by the gauge group. Hence the minimum dis-
tance d of the code is given by the minimum weight op-
erator in ⟨LX ,LZ⟩ · ⟨GX , GZ⟩ − ⟨GX , GZ⟩. For subsys-
tem hypergraph product codes, this is exactly the mini-
mum distance of the involved classical codes, and hence
d(SHY PS(r)) = dr = 2r−1 [9, Sec. 3B].
In summary, we have the following

Theorem VIII.9. Let r ≥ 3 and let H be the parity
check matrix for the (2r−1, r, 2r−1)-classical simplex code
described in Section VIIID. The subsystem hypergraph
product simplex code SHY PS(r) is an [n, k, d]-quantum
subsystem code with gauge group generated by 3-qubit op-
erators and

n = (2r − 1)2,

k = r2,

d = 2r−1.

It’s evident from the tensor product structure of
(8) that like the physical qubits, the logical qubits of
SHY PS(r) may be arranged in an r× r array, such that
logical operators have support on lines of qubits. In fact,
recent work [10] demonstrates that a basis of logical op-
erators may be chosen such that pairs of logical X/Z op-
erators have supports intersecting in at most one qubit.
The following result is an immediate application of [10,
Thm. 1]:

14

Theorem VIII.10. Let r ≥ 3. There exists a generator
matrix G ∈ Fr×nr

2 for the classical simplex code and an
ordered list of r bit indices π(G) ⊂ [1..nr] known as piv-
ots, such that PGT = Ir for the pivot matrix P ∈ Fr×nr

2 :
Pi,j = 1 if and only if π(G)[i] = j. Moreover, the matri-
ces

LX = (P ⊗G), LZ = (G⊗ P),

form a symplectic basis for the logical X/Z operators of
SHY PS(r).

The proof of [10, Thm. 1] is constructive and, as the
name pivots suggests, relies on a modified version of the
Gaussian elimination algorithm [10, Alg. 1]. This yields
a so-called strongly lower triangular basis for the simplex
code, represented by G, with rows {gi}i∈π(G) indexed by
the pivots. As P has row weights equal to one, we see
that the matrix products PGT = Ir and LXL

T
Z = Ir2

hold not only over F2 but over R. Hence, given pairs of
pivots (i, j), (k, l) ∈ π(G)2, the associated logical Paulis
Xi,j , Zk,l given by basis vectors ei⊗gj ∈ LX and gk⊗el ∈
LZ have intersecting support if and only if (i, j) = (l, k).
Moreover, this intersection is on the (i, j)th qubit of the
array. From this point, we assume that G, and the logical
operators of SHY PS(r), are of the form above.

F. Lifting classical automorphisms

The geometric structure of SHY PS(r) suggests a nat-
ural way to lift automorphisms of the simplex code by
independently permuting either rows or columns of the
qubit array. In this manner, we see that SHY PS(r)

inherits |GLr(2)|2 = O(22r
2

) automorphisms from the
two copies of the classical simplex code, and hence
Aut(SHY PS(r)) grows exponentially with the number
of logical qubits k = r2.

Lemma VIII.11. Let r ≥ 3 and C be the (nr, r, dr)-
simplex code with automorphisms σ1, σ2 ∈ Aut(C). Then
σ1 ⊗ σ2 ∈ Aut(SHY PS(r)). Furthermore,

|Aut(SHY PS(r))| ≥ |GLr(2)|2.

Proof. Clearly σ1 ⊗ σ2 is a permutation of the required
number of qubits n = n2r and so we need only check
that it preserves the gauge generators GX and GZ . By
definition of code automorphisms, for each σi ∈ Aut(C)
there exists a corresponding hσi

∈ GLmi
(2) such that

hσi
H = Hσi. Hence

GX · (σ1 ⊗ σ2) = (Hσ1 ⊗ σ2)
= (hσ1

H ⊗ σ2)
= (hσ1

⊗ σ2) ·GX ,

with GZ similarly preserved. For the second claim, note
that a tensor product of matrices A ⊗ B is the identity
if and only if A and B are also identity. Hence each pair

σ1, σ2 ∈ Aut(C1)×Aut(C2) produces a distinct σ1⊗σ2 ∈
Aut(SHY PS(r)).

Note that the above result naturally generalises to all
subsystem hypergraph product codes, constructed from
possibly distinct classical codes.
To determine the logical operator induced by the above

automorphisms we examine the permutation action on
the logical basis given by Theorem VIII.10.

Lemma VIII.12. Let r ≥ 3 and C(r) be the (nr, r, dr)-
simplex code with generator matrix G. Furthermore, as-
sume that σ1, σ2 ∈ Aut(C) with corresponding linear
transformations gσ1

, gσ2
∈ GLr(2) such that gσi

G = Gσi.
Then σ1 ⊗ σ2 ∈ Aut(SHY PS(r)) induces the following
action on the basis of logical operators

LZ · (σ1 ⊗ σ2) = (gσ1 ⊗ g−T
σ2

) · LZ ,

LX · (σ1 ⊗ σ2) = (g−T
σ1
⊗ gσ2

) · LX .

Proof. For ease of presentation, let’s consider the action
of σ ⊗ I where σ ∈ Aut(C) (the general case follows
identically). Firstly observe that

LZ(σ ⊗ I) = (Gσ ⊗ P) = (gσG⊗ P) = (gσ ⊗ I)LZ .

The permutation action on the basis of X-logicals is then
given by

LX(σ ⊗ I) = (Pσ ⊗G),

where

Ir2 = LX · LT
Z = LX(σ ⊗ I) · (σT ⊗ I)LT

Z

= (Pσ ⊗G) · (LZ(σ ⊗ I))T
= (Pσ ⊗G) · (GT ⊗ PT) · (gTσ ⊗ I).

Collecting terms and noting that A⊗B = Ir2 if and only
if both components are identity (recall also that PGT =
Ir), it follows that PσGT = g−T

σ . Now H spans kerG
and hence all solutions to the above are of the form

Pσ = g−T
σ P +AH,

for some A ∈Mnr
. In summary, there exists A such that

LX(σ ⊗ I) = Pσ ⊗G
= (g−T

σ P +AH)⊗G
= (g−T

σ ⊗ I)(P ⊗G) + (A⊗ Ir)(H ⊗G)
= (g−T

σ ⊗ I)LX + (A⊗ Ir)SX .

That is, up to stabilizers (the exact stabilizer determined
by A), σ ⊗ I has the desired action on LX .

As a logical Clifford operator is determined (up to a
phase) by its action on the the basis of logical Paulis,
Lemma VIII.12 demonstrates that the qubit permutation
σ1 ⊗ σ2 induces the logical CNOT circuit corresponding
to g−T

σ1
⊗ gσ2

∈ GLr2(2).

15

IX. CNOT OPERATORS IN SHYPS CODES

In this section, the collection of automorphisms

{σ1 ⊗ σ2 | σi ∈ Aut(C(r))} ≤ Aut(SHY PS(r))

serves as the foundation for generating all logical CNOT
operators in the SHYPS codes.

First, following [6], we show how all logical cross-block
CNOT operators (with all controls in a first code block,
and all targets in a second code block) may be attained by
sequences of physical depth-1 circuits, that interleave the
transversal CNOT operator with code automorphisms.
In-block CNOT operators are then achieved by use of an
auxiliary code block (see Section IXA). To demonstrate
efficient compilation, we develop substantial linear alge-
bra machinery for certain matrix decomposition prob-
lems – we expect these methods to be useful for logical
operator compilation in many other code families.

A summary of depth bounds for a range of logical
CNOT operators of SHYPS codes is available in Table II.

Notation: We adopt the notation discussed in Exam-
ple VIII.1, where CNOT circuits on b blocks of k = r2

logical qubits or n = n2r physical qubits, are described by
invertible matrices in GLbr2(2) or GLbn2

r
(2), respectively.

The collection of all (not necessarily invertible) n×n bi-
nary matrices is denoted by Mn(2) and Ei,j ∈Mn(2) de-
notes the matrix of all zeros except the (i, j) entry equal
to 1. The collection of diagonal matrices are denoted
Diagn(2) ⊂Mn(2).

Lemma IX.1. Let g1, g2 ∈ GLr(2). Then the logical

CNOT circuits

(
I g1 ⊗ g2
0 I

)
,

(
I 0

g1 ⊗ g2 I

)
∈ GL2r2(2)

on code SHY PS(r) may be implemented by a depth-1
physical CNOT circuit.

Proof. First recall that (like all CSS codes) the transver-

sal CNOT⊗n2
r implements CNOT

⊗r2

between two code
blocks of SHY PS(r). Independently, it follows from
Lemmas VIII.6 and VIII.12 that there exist σi ∈
Snr

, such that the physical CNOT circuit given by(
I 0
0 σ1 ⊗ σ2

)
∈ GL2n2

r
(2) implements

(
I 0
0 g1 ⊗ g2

)
∈

GL2r2(2). Hence(
I 0
0 σ−1

1 ⊗ σ−1
2

)
·
(
I I
0 I

)
·
(
I 0
0 σ1 ⊗ σ2

)
=

(
I σ1 ⊗ σ2
0 I

)
,

implements(
I 0
0 g−1

1 ⊗ g−1
2

)
·
(
I I
0 I

)
·
(
I 0
0 g1 ⊗ g2

)
=

(
I g1 ⊗ g2
0 I

)
.

But recall that π = σ1⊗σ2 is a permutation matrix, and
in particular has row and column weights equal to one.

π
=

π−1 π

Figure 3. Physical implementation of a cross-block CNOT
operator utilising π ∈ Aut(C).

Hence (
I π
0 I

)
represents the depth-1 physical CNOT circuit∏

i CNOTi,π−1(i)+n2
r
. The circuit diagram illustrat-

ing this conjugated CNOT operator is given by Fig. 3.
The transposed logical CNOT circuit follows iden-

tically by exchanging the operations on the two code
blocks.

We now establish some notation for our generators,
and drop the overline notation on the understanding that
all operators are logical operators unless specified other-
wise.

Definition IX.2. Denote the above collection of logical
CNOT operators induced from classical automorphisms
by

A := {
(
I g1 ⊗ g2
0 I

)
: gi ∈ GLr(2)} and (9)

AT := {
(

I 0
g1 ⊗ g2 I

)
: gi ∈ GLr(2)}. (10)

A. Generating cross-block CNOT operators

The CNOT operators A and AT are natural gener-

alisations of CNOT⊗n2
r in that they have a transversal

implementation on a pair of code blocks, and are thus
inherently fault-tolerant. It is therefore highly desirable
to use these circuits as generators for a larger class of
CNOT operators. In this section we will see that they in
fact suffice to efficiently generate all CNOT circuits be-
tween an arbitrary number of code blocks; a result that
is highly unexpected in the context of generic quantum
codes, and is derived from the particularly symmetric
nature of the classical simplex codes.
Before proceeding, we state our first main result, which

concerns cross-block CNOT operators in SHYPS codes

Theorem IX.3. Let A ∈Mr2(2). Then arbitrary cross-
block CNOT operators given by(

I A
0 I

)
,

(
I 0
A I

)
∈M2r2(2)

are implemented fault-tolerantly in SHY PS(r) using at
most r2 + r + 4 generators from A and AT .

16

In particular, the implementation of cross-block
CNOTs scales with the number of logical qubits k = r2.
In fact, by considering the size of the groups involved we
see that this scaling is optimal up to a constant factor:

as |Mr2(2)| = 2r
4

and |A| = |GLr(2)|2 = O(22r
2

),

Mr2(2) = Al =⇒ |Mr2(2)| ≤ |A|l,

and hence l ≥ r2/2.
Theorem IX.3 is the foundation for much of the efi-

cient, fault-tolerant computation in the SHYPS codes; it
is from these operators that we build arbitrary CNOT
operators, as well multi-block diagonal Clifford gates (in
conjunction with a fold-transversal Hadmard gate – see
Section XI).

To prove Theorem IX.3, first observe that the composi-
tion of cross-block CNOT operators in ⟨A⟩ (and similarly
in
〈
AT
〉
) behaves like addition of the off-diagonal blocks(

I g1 ⊗ g2
0 I

)
·
(
I h1 ⊗ h2
0 I

)
=

(
I g1 ⊗ g2 + h1 ⊗ h2
0 I

)
.

Hence our Clifford generation problem becomes a ques-
tion of showing that tensor products of the form g1 ⊗ g2
efficiently generate the full matrix algebra, under addi-
tion. In summary, Theorem IX.3 is an immediate corol-
lary of the following result

Theorem IX.4. Let A ∈ Mr2(2). Then there exist w
pairs of invertible matrices gi1 , gi2 ∈ GLr(2), for some
w ≤ r2 + r + 4 such that A =

∑w
i1,i2

gi1 ⊗ gi2 .
The remainder of this section is devoted to the proof

of Theorem IX.4 and so it is useful to begin with some
remarks on our approach: First observe that the main
challenge is that the matrices gi1 etc. must be invert-
ible. We first demonstrate that a decomposition of at
most r2 terms is easy without this invertibility condi-
tion, and then proceed to adapt this to invertible tensor
products, while incurring minimal additional overhead.
To this end we develop a number of matrix decomposi-
tion results that consider spanning sets in GLr(2), as well
as the effect of adding specific invertible matrices such as
permutations.

To track these results, we introduce the following
weight function.

Definition IX.5. Let A ∈ Mr2(2). The weight of A,
denoted w(A), is the minimal number of pairs (gi1 , gi2) ∈
GLr(2)

2 such that A =
∑w(A)

i=1 gi1 ⊗ gi2 .
First let’s decompose our arbitrary matrix into a non-

invertible tensor product

Lemma IX.6. Let A ∈Mr2(2). Then there exist t ≤ r2
matrix pairs Mi, Ni ∈Mr(2) such that A =

∑
Mi ⊗Ni.

Proof. Let Ai,j ∈Mr(2) be the (i, j)th block of A. Then

A =

r∑
i,j=1

Ei,j ⊗Ai,j (11)

is a decomposition of the required form.

Note that the minimal t required can often be much
lower than r2, and such a minimal decomposition is typ-
ically referred to as the tensor rank decomposition.
The task now is to convert an expression of the form

(11) into a similar expression comprising only invertible
matrices.

Lemma IX.7. Let M ∈ Mk(2), (k ≥ 2) then M is a
sum of at most two elements in GLk(2).

Proof. First let’s check that the claim holds for the iden-
tity matrix.

I2 =

(
1 1
1 0

)
+

(
0 1
1 1

)
and I3 =

1 1 1
0 1 1
1 0 1

+

0 1 1
0 0 1
1 0 0

are appropriate decompositions for k = 2, 3. Then clearly
larger Ik can be decomposed as blocks of 2 or 3 and
treated as block sums of the above.
Now for arbitrary M ∈ Mk(2) of rank l ≤ k, there

exist invertible matrices g, g′ ∈ GLk(2) corresponding to
row and column operations respectively, such that

gMg′ =

(
Il

0k−l

)
,

and zeros elsewhere via Gaussian elimination. But we
know that there exist X,Y ∈ GLl(2) such that X + Y =
Il and hence

M = (g)−1

(
X

Ik−l

)
(g′)−1 + (g)−1

(
Y

Ik−l

)
(g′)−1

is a decomposition as a sum of two matrices in GLk(2).
NB: if M has rank 1 then simply take(

1 0
0 0

)
=

(
1 1
1 0

)
+

(
0 1
1 0

)
and proceed similarly.

As the tensor product is distributive over addition,
each non-invertible matrix may be split in two using
Lemma IX.7 to yield

Corollary IX.8. Let A ∈Mr2(2). Then w(A) ≤ 4r2.

Although this establishes a bound w(A) ∈ O(r2), we’ll
see that the constant factor 4 can be greatly improved.

Proposition IX.9. Let A ∈ Mr2(2) have a tensor de-
composition of rank t, i.e., there exists Mi, Ni ∈ Mr(2)

such that A =
∑t

i=1Mi ⊗Ni. Then

w(A) ≤ min(4t, 2t+ 8, t+ r + 6, r2 + r + 4).

The first step in proving Proposition IX.9 is to gener-
alise Lemma IX.7 to vector spaces and spanning sets of
invertible matrices. This also requires an understanding
of the proportion of binary matrices that are invertible.

17

Lemma IX.10. Let r ≥ 1. Then

|GLr(2)|/|Mr(2)| >
1

4
.

Proof. First observe from standard formulae that

|GLr(2)|/|Mr(2)| =
r∏

i=1

(1− 2−i),

and hence the Lemma clearly holds for r = 1. For r ≥ 2,
we’ll prove the slightly stronger statement

|GLr(2)|/|Mr(2)| >
1

4
+ 2−(r+3/2),

via induction. The statement is easily checked for r = 2
and assuming the result holds for some l ≥ 2:

|GLl+1(2)|/|Ml+1(2)| = |GLl(2)|/|Ml(2)| · (1− 2−(l+1))

> (
1

4
+ 2−(l+3/2)) · (1− 2−(l+1))

=
1

4
+ 2−(l+3/2) − 2−(l+3) − 2−(2l+5/2)

= [
1

4
+ 2−(l+1+3/2)]

+ [2−(l+1+3/2) − 2−(l+3) − 2−(2l+5/2)].

So the result follows for l + 1, provided

2−(l+5/2) − 2−(l+3) − 2−(2l+5/2) > 0.

But this holds if and only if

2l − 2l−1/2 − 1 = 2l−1(2−
√
2)− 1 > 0,

which is indeed true for l ≥ 2.

Lemma IX.11. Let V ≤ Mr(2) be a vector subspace of
dimension d. Then there exists T ⊂ GLr(2) such that
|T | ≤ min(2d, r2, d+ 2) and V ≤ ⟨T ⟩.

Proof. The first two entries in the bound min(2d, r2, d+2)
follow immediately from Lemma IX.7 and the fact that
⟨GLr(2)⟩ = Mr(2) which has dimension r2. It therefore
remains to show the final d + 2 bound. Well if V con-
tains an invertible matrix g1 then V = ⟨g1, V ′⟩ for a vec-
tor space V ′ of strictly smaller dimension. Hence we as-
sume without loss of generality that V ≤Mr(2)\GLr(2)
consists solely of non-invertible matrices. Let’s denote a
basis of V by A1, . . . , Ad.

As the cosetsMr(2)/V tile the spaceMr(2), by Lemma
IX.10 there exists M ∈ Mr(2) such that the proportion
of invertible matrices in the coset M + V is greater than
1/4. I.e., if we denote these invertible elements by G ⊆
M + V , then |G| > 2d−2. Now as each element of G has
the form M +

∑
i αiAi, it follows that even-weight linear

combinations of elements in G are non-invertible. Hence

|⟨G⟩| ≥ 2|G| > 2d−1,

and thus ⟨G⟩ has dimension at at least d. So there exist
linearly independent g1, . . . , gd ∈ G and the subspace of
even weight linear combinations V ′ ≤ ⟨g1, . . . , gd⟩ is a
d− 1 dimensional subspace V ′ < V . Finally, taking any
A ∈ V \V ′ and applying Lemma IX.7 to yield a sum of
two invertibles A = gd+1 + gd+2, it follows that

V = ⟨V ′, A⟩ ≤ ⟨g1, . . . , gd+2⟩.

Next we prove some useful Lemmas that study the ef-
fect of adding diagonal matrices and permutation matri-
ces.

Lemma IX.12. For all A ∈Mr(2) there exists a diago-
nal D ∈Mr(2) such that A+D ∈ GLr(2).

Proof. We proceed by induction on r. The case r = 1 is
clear, and suppose the Lemma holds holds for l. Then
for A ∈Ml+1(2) we may write

A =

(
A′ v
uT a

)
for some A′ ∈ Ml(2), u, v ∈ Fl

2, and a ∈ F2. By the
induction hypothesis there exists diagonal D′ ∈ Ml(2)
such that A′ +D′ ∈ GLl(2). Then for diagonal

D =

(
D′ 0
0 a+ uT (A′ +D′)−1v + 1

)
we have

A+D =

(
A′ +D′ v
uT uT (A′ +D′)−1v + 1

)
=

(
I 0

uT (A′ +D′)−1 1

)
·
(
A′ +D′ 0

0 1

)
·
(
I (A′ +D′)−1v
0 1

)
.

As each matrix in the product decomposition above is
invertible, A+D ∈ GLl+1(2).

Corollary IX.13. Let A ∈Mr(2) and P ∈ GLr(2) be a
permutation matrix. Then there exists O ∈ Mr(2) with
nonzero entries supported on the nonzero entries of P
such that A+O ∈ GLr(2).

Proof. Apply Lemma IX.12 to P−1A to find a diagonal
D such that P−1A+D is invertible and then define O =
PD.

Lemma IX.14. Let D ∈ Mr(2) be a diagonal matrix.
Then either D ∈ GLr(2), or D + P ∈ GLr(2) for all
r-cycle permutations P .

Proof. Clearly D is invertible if and only if D = I, so we
restrict to the case where D ̸= I. First note that as P
is an r-cycle, the full set of indices 1, . . . , r is contained
in the single orbit of P . I.e., given any starting point i,

18

the list i, P (i), P 2(i), . . . , P r−1(i), is a re-ordering of
1, . . . , r. Consequently, we may index columns of D + P
by the numbers P l(i). Now since D ̸= I, there exists
some i such that the i-th diagonal entry of D, is zero.
Choosing this as the starting point of our column index-
ing, we see that the columns of D + P are given by

(DeTi +e
T
P (i) = eTP (i), De

T
P (i)+e

T
P 2(i), . . . , De

T
P r−1(i)+e

T
P r(i)).

By induction, we show the span of the first m elements
of this sequence is given by

⟨eTP (i), e
T
P 2(i), . . . , e

T
Pm(i)⟩.

The base case is trivial by assumption. For the inductive
step, observe that the l + 1 entry of the sequence is ei-
ther eTP l+1(i) or eTP l(i) + eTP l+1(i), neither of which are in

⟨eTP (i), e
T
P 2(i), . . . , e

T
P l(i)⟩ since P is an r-cycle, and either

of which when added to the generating set yields a vector
space given by ⟨eTP (i), e

T
P 2(i), . . . , e

T
P l+1(i)⟩. Thus the span

of the columns is〈
eTP (i), e

T
P 2(i), . . . , e

T
P r(i)

〉
=
〈
eT1 , e

T
2 , . . . , e

T
r

〉
= Fr

2.

As the columns of D+P span Fr
2, D+P is invertible as

desired.

Corollary IX.15. Let P ∈ GLr(2) be a permutation,
and D ∈ Mr(2) be diagonal. Then either PD ∈ GLr(2)
or PD + PQ ∈ GLr(2) for all r-cycle permutations Q ∈
GLr(2).

Proof. Apply Lemma IX.14 to D, then multiply by P ,
which preserves invertibility.

With these results in place, we are ready to move onto
the proof of Proposition IX.9

Proof. (Proof of Proposition IX.9). By assumption, we
can write

A =

t∑
i=1

Mi ⊗Ni

for some Mi, Ni ∈Mr(2). By Lemma IX.11, we can find
a set of q elements B ⊆ GLr(2) that generate all Mi,
for q ≤ min(2t, r2, t+ 2). Expressing each Mi as a linear
combination of elements of B, we have

A =

t∑
i=1

 q∑
j=1

µjiBj

⊗Ni =

q∑
j=1

Bj ⊗
(

t∑
i=1

µjiNi

)
.

By Lemma IX.12, there exists some Cj ∈ GLr(2) invert-
ible and some Dj diagonal so that

Cj +Dj =

t∑
i=1

µjiNi

for all 1 ≤ j ≤ q. The vector space spanned by the set
{Dj}qj=1 has dimension p ≤ min(q, r), and after expand-

ing each Dj in a basis E for ⟨Dj⟩, we can rewrite A as

A =

q∑
j=1

Bj ⊗ Cj +

q∑
j=1

Bj ⊗Dj

=

q∑
j=1

Bj ⊗ Cj +

q∑
j=1

Bj ⊗
(

p∑
ℓ=1

δℓjEℓ

)

=

q∑
j=1

Bj ⊗ Cj +

p∑
ℓ=1

 q∑
j=1

δℓjBj

⊗ Eℓ.

Again, by Lemma IX.11 we can compute a set
of m elements F from GLr(2) that contains〈∑q

j=1 δℓjBj : 1 ≤ ℓ ≤ p
〉
. Expressing elements

from the span as F -linear combinations, we have

A =

q∑
j=1

Bj ⊗ Cj +

p∑
ℓ=1

(
m∑

a=1

βaℓFa

)
⊗ Eℓ

=

q∑
j=1

Bj ⊗ Cj +

m∑
a=1

Fa ⊗
(

p∑
ℓ=1

βaℓEℓ

)
.

Next, by Lemma IX.14, every
∑p

ℓ=1 βaℓEℓ is such that
adding ρaP for some ρa ∈ F2 and P a fixed r-cycle makes
the matrix invertible, and so we have

A =

q∑
j=1

Bj ⊗ Cj +

m∑
a=1

Fa ⊗
(
ρaP +

p∑
ℓ=1

βaℓEℓ

)

+

m∑
a=1

Fa ⊗ (ρaP)

=

q∑
j=1

Bj ⊗ Cj +

m∑
a=1

Fa ⊗
(
ρaP +

p∑
ℓ=1

βaℓEℓ

)

+

(
m∑

a=1

ρaFa

)
⊗ P

Finally, by Lemma IX.7 we know that
∑m

a=1 ρaFa is the
sum of at most two invertibles. This permits us to write
for G1, G2 ∈ {0} ∪GLr(2)

A =

q∑
j=1

Bj ⊗ Cj +

m∑
a=1

Fa ⊗
(
ρaP +

p∑
ℓ=1

βaℓEℓ

)
+ G1 ⊗ P +G2 ⊗ P

where by construction every lone or bracketed term is
an element of GLr(2). Therefore, we conclude w(A) ≤
q +m+ 2, where we recall

q ≤ min(2t, r2, t+ 2)

m ≤ min(t+ 2, r) + 2.

There are now four relevant regimes to bound w(A):

19

(t ≤ 3): rather than follow the process above, each
Mi, Ni can be decomposed as a sum of two invertible
matrices using Lemma IX.7 to yield w(A) ≤ 4t.
(3 < t ≤ r− 2): here we take q to be bounded by t+2

and m bounded by t+ 4 to give w(A) ≤ 2t+ 8.
(r− 2 < t ≤ r2 − 2): here we take q to be bounded by

t+ 2 and m bounded by r + 2 to give w(A) ≤ t+ r + 6.
(t > r2 − 2): finally here we take q bounded by r2 and

m ≤ r + 2 to yield w(A) ≤ r2 + r + 4.

Summarising the worst case of Proposition IX.9, The-
orem IX.4 is now immediate, and we repeat it below for
convenience

Theorem IX.16. Let A ∈ Mr2(2). Then w(A) ≤ r2 +
r + 4.

For applications in decomposing arbitary Clifford op-
erators it is useful to consider the more specific case of
upper-triangular matrices:

Lemma IX.17. Let A ∈Mr2(2) be any invertible upper-
triangular matrix. Then w(A) ≤ r(r + 1)/2 + 6.

Proof. Following similarly to the proof of Proposi-
tion IX.9, we can always write any such A as the sum

A =

r(r−1)
2∑

i=1

Si ⊗Ni +

r∑
i=1

Ei,i ⊗ Ui

for Si strictly upper triangular matrices, Ni arbitrary
elements of Mr(2), Ei,i the usual weight one diagonal
matrices, and Ui an invertible upper triangular matrix.
Computing a generating set G of invertible matrices for

the space spanned by Ni with at most q ≤ r(r−1)
2 + 2

elements and collecting terms, we have

A =

q∑
j=1

 r(r−1)
2∑

i=1

νjiSi

⊗Gj +

r∑
i=1

Ei,i ⊗ Ui

= I ⊗

 q∑
j=1

Gj

+

q∑
j=1

I + r(r+1)
2∑

i=1

νjiSi

⊗Gj

+

r∑
i=1

Ei,i ⊗ Ui.

Applying Lemma IX.7 to the first term, and noting that

each I +
∑ r(r+1)

2
i=1 νjiSi ∈ GLr(2) yields

w(A) ≤ q + 2 + w(

r∑
i=1

Ei,i ⊗ Ui).

But then Ei,i+C is invertible for any r-cycle C and hence
the final term is bounded by

r∑
i=1

w(Ei,i + C,Ui) + w(C,

r∑
i=1

Ui) ≤ r + 2.

The result now follows.

B. Arbitrary CNOT operators

Theorem IX.3 establishes efficient fault-tolerant imple-
mentations of cross-block CNOT circuits. It thus remains
to show how our lifted automorphisms may implement
CNOT circuits within a single code block. We remark
that this does follow from [6, Thm. 4], however by relying
not on generating transvections, but rather an auxiliary-
block based trick, we minimise additional overhead.

Lemma IX.18. Any logical CNOT circuit on a code
block of SHY PS(r) (i.e., any element of GLr2(2)) may
be generated by r2 + r + 4 depth-1 CNOT circuits from
A ∪AT , using a single auxiliary code block.

Proof. Take an arbitrary C ∈ GLr2(2). The CNOT cir-
cuit C can be executed using a scheme based on the well-
known quantum teleportation circuit:

|ψ⟩
|0⟩ C−1 Z C |ψ⟩

So at the cost of introducing an additional auxiliary code
block in the |0⟩ state (which may be prepared offline in
constant depth) and teleporting our state |ψ⟩, C is ap-
plied within the code block for the cost of a single element
from

〈
A ∪AT

〉
. The lemma then follows directly from

Theorem IX.3.

Note that in the remainder of this section, we consider
arbitrary CNOT operators, modulo a possible permuta-
tion of the logical qubits. These will be accounted for
later when compiling an arbitrary Clifford operator in
Section XII, and in fact SWAP circuits may be imple-
mented more efficiently than generic CNOT operators
(see Section XI and Table IV). In particular, logical per-
mutations on b code blocks are implementable in O(r2)
depth, a cost that crucially doesn’t scale with the number
of code blocks (see Theorem XI.4).

Lemma IX.19. Up to logical permutation, any logical
CNOT circuit across two code blocks of SHY PS(r) (i.e.,
any element of GL2r2(2)) may be generated by 4r2+4r+
16 depth-1 CNOT circuits from A ∪AT , and executed in
depth 3r2 + 3r+ 12, using at most 2 additional auxiliary
code blocks.

Proof. Let X ∈ GL2r2(2) and assume that X has PLU
decomposition

X = P

(
CL 0
BL C ′

L

)(
CU AU

0 C ′
U

)
.

As all diagonal blocks in L and U are invertible, there

20

exist A′
L, B

′
U ∈Mr2(2) such that

X = P

(
I 0
B′

L I

)(
CLCU 0

0 C ′
LC

′
U

)(
I A′

U
0 I

)
.

Here P is a cross block permutation that as stated in
the Lemma, we need not consider (in practice it will be
accounted for as part of a holistic Clifford decomposition,
or simply tracked in software). Of the remaining three
factors, the outer two matrices are clearly in

〈
AT
〉
and

⟨A⟩, respectively. Hence it remains to implement(
CLCU 0

0 C ′
LC

′
U

)
,

i.e., arbitrary invertible CNOT circuits C = CLCU and
C ′ = C ′

LC
′
U , within the individual code blocks. It follows

from Lemma IX.18 that these can be implemented for
the cost of a single element from

〈
A ∪AT

〉
, each using a

single auxiliary code block.
We conclude that X is implemented by a circuit con-

sisting of at most 4 logical cross-block CNOT circuits,
and hence 4(r2 + r + 4) depth-1 circuits from A ∪ AT .
Furthermore, C and C ′ can be performed in parallel
since they are applied to different code blocks. Hence,
X can be implemented in a depth no greater than
3(r2 + r + 4).

We conclude this section by generalising the above to
an arbitrary number of blocks. For ease of presentation
in the proof, and to avoid overly complicated compiling
formulae we restrict our attention to b = 2a blocks -
the general case follows similarly. We state the following
result in terms of rounds of cross-block CNOT circuits in〈
A ∪AT

〉
Lemma IX.20. Let b = 2a and X = GLbr2(2) be an
arbitary CNOT circuit across b code blocks. Up to pos-
sible logical permutation, X is implemented by b(b + 1)
cross-block CNOT circuits in

〈
A ∪AT

〉
, performed over

2b− 1 rounds.

Proof. We start again with a PLU decomposition for X,

X = P

(
CL 0
BL C ′

L

)(
CU AU

0 C ′
U

)
,

where each block in L,U themselves consist of b/2 sub-
blocks, and the permutation P may be ignored. Isolating
U , we have that

U =

(
CU AU

0 C ′
U

)
=

(
CU 0
0 C ′

U

)(
I C−1

U AU

0 I

)
.

But C−1AU consists of b/2 × b/2 blocks Mi,j ∈ Mr2(2)
and hence(

I C−1
U AU

0 I

)
=

b/2∏
j=1

(
I
∑b/2

i Ei,σj(i) ⊗Mi,σj(i)

0 I

)

=

b/2∏
i,j=1

(
I Ei,σj(i) ⊗Mi,σj(i)

0 I

)
,

where σ = (1, 2, . . . , b/2) is the length b/2 cyclic shift of
indices. For example if b = 4, σ = (1, 2) and(
I C−1

U AU

0 I

)
=

[(
I E1,1 ⊗M1,1

0 I

)
·
(
I E2,2 ⊗M2,2

0 I

)]
·
[(
I E1,2 ⊗M1,2

0 I

)
·
(
I E2,1 ⊗M2,1

0 I

)]
.

Observe that each square bracketed term, correspond-
ing to a fixed power σj , consists of b/2 block to block op-
erators in ⟨A⟩ that may be performed in parallel. Hence
the off-diagonal matrix in the decomposition of U re-
quires b2/4 operators in ⟨A⟩, that with parallelisation
can be achieved in b/2 rounds.
To cost the diagonal term in U we proceed by in-

duction: assume that each (upper triangular) block
CU , C

′
U ∈ GL(b/2)r2(2) may be implemented by f(b/2)

generators in A, over t(b/2) rounds (both are performed
in parallel). Then

t(b) = t(b/2) + b/2 and f(b) = 2f(b/2) + b2/4.

Solving these recurrence relations using initial conditions
t(2) = 2 and f(2) = 3 yields

t(b) = b and f(b) =
b

2
(b+ 1).

Recall that these costings are for U only, however the
costings for L are identical. Lastly, we note that the b
in-block CNOT operators appearing in L can be com-
bined with those in U and executed together in a single
round. Thus given cross-block operators in

〈
A ∪AT

〉
,

any b-block CNOT circuit X ∈ GLbr2(2) can be imple-
mented in 2b− 1 rounds, for a total b(b+ 1) cross-block
operators.

Corollary IX.21. Let b = 2a and X = GLbr2(2) be
an arbitrary logical CNOT circuit across b code blocks of
SHY PS(r). Then up to a possible logical permutation,
X is implementable in depth at most (2b−1)(r2+ r+4),
using depth-1 CNOT circuits in A ∪AT .

Proof. This is immediate from Theorem IX.3 and
Lemma IX.20.

Lastly, let’s consider the case of single CNOT operators

Lemma IX.22. Any single logical CNOT operator be-
tween or within code blocks is implementable fault-
tolerantly in depth at most 4.

Proof. A single CNOT gate across code blocks that con-
nects the (i, j)th and (l, k)th qubits corresponds to the
matrix in GL2r2(2) with off diagonal block Ei,k ⊗ Ej,l.
The result then follows by decomposing each term in the
tensor product into a sum of two invertible matrices using
Lemma IX.7.

21

For an in-block gate, we instead decompose the matrix
I + Ea,b ⊗ Ec,d ∈ GLr2(2) where at least one of a ̸= b,
or c ̸= d holds, and then apply the scheme introduced in
the proof of Lemma IX.18. In particular, observe that

I + Ea,b ⊗ Ec,d = I ⊗ (I + Ec,d) + (I + Ea,b)⊗ Ec,d

= (I + Ea,b)⊗ I + Ea,b ⊗ (I + Ec,d)

One of the two expressions above will always contain at
most two non-invertible terms, and hence two applica-
tions of Lemma IX.7 yields w(I +Ea,b⊗Ec,d) ≤ 4. Thus
the corresponding in-block CNOT operator has depth at
most 4.

We remark that the most common instance will be that
both a ̸= b and c ̸= d, in which case there is only one
non-invertible term, yielding depth 3.

Remark. (Space Costs) Throughout this section we
have been primarily concerned with minimising the depth
of CNOT operator implementations. This directly trans-
lates to minimising the number of logical cycles required
in SHYPS codes and (assuming a fixed time cost for syn-
drome extraction), the total time cost. Of lesser impor-
tance has been tracking the space overhead of these op-
erator implementations but this can be easily derived:
cross-block logical generators in A ∪ AT require 0 addi-
tional qubits, whereas Lemma IX.18 demonstrates that
applying an in-block CNOT circuit requires a single aux-
iliary code block. Hence, assuming that in-block op-
erators are performed in parallel (as in the proof of
Lemma IX.20), a logical CNOT operator on b code blocks
incurs a space overhead of at most bn qubits. Addition-
ally, in the large b limit, [6, Thm. 4] implies that we can
get away with 0 additional code blocks without changing
the leading order terms for time overheads.

X. DIAGONAL OPERATORS IN SHYPS CODES

The previous section characterizes the depth-1 CNOT
circuits that arise as lifts of classical automorphisms, and
furthermore, how such circuits generate the full group of
CNOT operators across multiple blocks of the SHYPS
codes. We now turn our attention to diagonal Clifford
gates, i.e., those that correspond to diagonal unitary ma-
trices with respect to the computational basis. In partic-
ular we describe a collection of depth-1 logical diagonal
Clifford operators that leverage automorphisms of the
classical simplex code C(r), and demonstrate how these
efficiently generate all diagonal Cliffords. Recall from
Section VIIIA that up to phase, such Clifford operators
are generated by S and CZ gates and form an abelian
subgroup of Cn.

Before going through the details on diagonal operators,
we note that all results below can be trivially converted
to results on X-diagonal operators, i.e., Clifford opera-
tors that are diagonal unitary matrices when considered
in the Hadamard-rotated computational basis. This sub-
group of Clifford operators is obtained by conjugating

diagonal operators by the all-qubit Hadamard operator.
The fact that results on diagonal operators carry over
to X-diagonal operators can be understood by consider-
ing that conjugating a diagonal operator by the all-qubit
Hadamard operator transforms its symplectic representa-
tion by moving the off-diagonal block from the top-right
quadrant to the bottom-left quadrant.

A. Lifting classical automorphisms

Recall that diagonal Clifford operators are represented
modulo Paulis by symplectic matrices

{
(
I B
0 I

)
∈ Sp2k(2) | B ∈ SYMk(2)}, (12)

where SYMk(2) ⊂ Mk(2) denotes the subspace of sym-
metric matrices.
As the diagonal subgroup is abelian, efficiently gener-

ating all operators thus becomes a question of decompos-
ing arbitrary symmetric matrices as short sums from a
particular collection of generators. We construct these
generating symmetric matrices from classical automor-
phisms such that the corresponding diagonal operators
have favorable depth and fault-tolerance properties.
Before proceeding we first define a distinguished per-

mutation on our qubit array; in the language of [11],
this permutation is a ZX-duality. Intuitively, the map
τ exchanges the vector spaces defining X- and Z-gauge
operators, and will be used to account for the fact that
conjugating X-Paulis by diagonal Cliffords may produce
Z-Paulis.

Definition X.1. Given a2 qubits (physical or logical)
arranged in an a× a array, let τa ∈ Sa2 be the permuta-
tion that exchanges qubits across the diagonal, i.e., τa is
an involution exchanging qubits (i, j)↔ (j, i). In partic-
ular, τa = τ−1

a = τTa .
As we typically index qubits by the tensor product

basis eTi ⊗ eTj , we have equivalently in vector form that

τa(e
T
i ⊗eTj) = eTj ⊗eTi . This extends naturally to matrices

acting on this basis:

τa(A⊗B)τa = B ⊗A.

We’re now ready to introduce our generating set of log-
ical diagonal Clifford operators in the SHYPS codes: a
collection of so-called phase-type fold-transversal opera-
tors [11].

Lemma X.2. Let r ≥ 3 and C(r) be the (nr, r, 2
r−1)-

simplex code with generator matrix G. Furthermore, as-
sume that σ ∈ Aut(C(r)) with corresponding linear trans-
formation gσ ∈ GLr(2) such that gσG = Gσ.
Then σ lifts to a physical diagonal Clifford operator

U(σ) :=

(
I (σ ⊗ σT) · τnr

0 I

)

22

that preserves SHY PS(r). Moreover, this depth-1 cir-
cuit of diagonal gates has logical action given by

U(gσ) :=

(
I (g−T

σ ⊗ g−1
σ) · τr

0 I

)
.

Proof. Firstly we need to establish that B = (σ⊗σT)·τnr

is symmetric for U(σ) to define a valid physical diagonal
Clifford. As the transpose and inverse of a permutation
matrix are equal, it suffices to check that B is self-inverse:

B2 = (σ ⊗ σT)τnr (σ ⊗ σT)τnr

= (σ ⊗ σT)(σT ⊗ σ)
= (σσT ⊗ σTσ)

= I

Next observe that as a product of permutation matrices,
B has row/column weights equal to one and thus cor-
responds to a depth-1 physical circuit. As U commutes
with Z-gauge operators, to confirm that U acts as a logi-
cal operator of SHY PS(r) we need only check the action
on X-gauge operators, described by GX . Well

GX ·B = (H ⊗ Inr) · (σ ⊗ σT) · τnr

= (Hσ ⊗ σT) · τnr

= (hσ ⊗ σT)(H ⊗ I) · τnr

= (hσ ⊗ σT) · τr · (I ⊗H),

where we’ve used that Aut(C(r)) = Aut(C(r)⊥) and
hence there exists hσ such that Hσ = hσH. But

(hσ ⊗ σT) · τr · (I ⊗H) = (hσ ⊗ σT) · τr ·GZ

and hence the action of U(σ) is given by

[GX , 0] · U = [GX , (hσ ⊗ σ) · τr ·GZ] .

We conclude that conjugation by the physical Clifford
U preserves stabilizers and hence performs a valid logi-
cal Clifford operator on SHY PS(r). Note that by the
nature of the symplectic group, this logical Clifford is im-
plemented up to a Pauli correction. As there is always a
Pauli operator with the appropriate (anti)commutation
relations with the stabilizers and logical operators of the
code to fix any logical/stabilizer action sign issues, we
can ignore this subtlety [12]. The logical action of U is
then determined akin to the proof of Lemma VIII.12:

LX ·B = (P ⊗G) · (σ ⊗ σT) · τnr

= (Pσ ⊗GσT) · τnr

= (g−T ⊗ g−1)(P ⊗G) · τnr

= (g−T ⊗ g−1) · τr · (G⊗ P)
= (g−T ⊗ g−1) · τr · LZ .

As we are focused primarily on the logical action and
not the particular automorphism being used, we shall
typically relabel g−T 7→ g for ease of presentation. Sum-
marising the above we have

Corollary X.3. Let g ∈ GLr(2). The logical Clifford

operator U =

(
I (g ⊗ gT) · τr
0 I

)
on code SHY PS(r) is

implementable by a depth-1 physical diagonal Clifford cir-
cuit.

Example X.4. Let r = 3 and G be the simplex code
generator matrix from (7). Observe that1 1 0

0 1 0
0 0 1

G =

1 1 0
0 1 0
0 0 1

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

=

1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 0 1 0 1 1 1

= G · (1, 4)(3, 5).

Hence

U =

(
I [(1, 4)(3, 5)⊗ (1, 4)(3, 5)] · τ7
0 I

)

implements

U =

I
1 0 0
1 1 0
0 0 1

⊗
1 1 0
0 1 0
0 0 1

 τ3

0 I

 .

Remark. Recall that the presence of S and CZ gates in
diagonal Clifford operators (12) is determined by the di-
agonal and off-diagonal entries of B, respectively. Then
specifically for our generators, diagonal entries are de-
termined by the fixed points of the permutation matrix
σ ⊗ σT · τnr

. Here we see that

σ ⊗ σT · τnr
(eTi ⊗ eTj) = σ ⊗ σT (eTj ⊗ eTi)

= eTσ(j) ⊗ eTσT (i)

equals eTi ⊗ eTj if and only if σ(j) = i. Hence σ⊗σT · τnr

has exactly nr =
√
n fixed points {eTσ(j)⊗eTj }nr

j=1, and the

corresponding physical diagonal Clifford generator con-
tains nr S gates, and (n2r − nr)/2 CZ gates.

Corollary X.3 establishes a collection of logical diago-
nal Cliffords that are implemented in SHYPS codes by
depth-1 physical circuits and we denote these by

B := {
(
I (g ⊗ gT) · τr
0 I

)
: g ∈ GLr(2)}.

Unlike the CNOT circuits of Lemma IX.1 these op-
erators are not implemented strictly transversally. Fur-
thermore, as they contain entangling CZ gates within a
code block, one may be concerned that X-faults occur-
ring mid-circuit spread to a high-weight Z-error pattern
on different qubits. However from a fault-tolerance per-
spective, this error spread is only of concern if the ad-
ditional Paulis increase the support of a nontrivial logi-
cal operator. Otherwise the final error pattern, and the

23

collection of circuit faults that caused it, are equally cor-
rectable by the code’s error correction protocol.

This notion of fault-tolerance is quantified by the cir-
cuit distance dcirc which is the minimum number of faults
required in a noisy quantum circuit to produce a logi-
cal error, without triggering any syndromes. It’s clear
that dcirc is bounded above by the code distance, and if
dcirc = d we call the circuit distance preserving.
As the following Lemma demonstrates, our diagonal

operators B meet this distance preserving criterion.

Lemma X.5. Let U ∈ B. Then there exists a physical
implementation with circuit distance dcirc = d.

Proof. By Lemma X.2, there exists σ ∈ Snr such that U is
implemented by U(σ⊗σT) where the off-diagonal entries
of σ⊗σT determine the presence of physical CZ gates. As
discussed above, CZ gates spread Y/Z faults but by the
structure of the logical Paulis in SHY PS(r) (see The-
orem VIII.10), a single X-fault spreads to a weight two
Z-Pauli in the support of a logical operator if and only
if the CZ connects qubits in the same row or column.
Hence to show that dcirc = d it suffices to show that this
is not the case.

Well firstly consider two distinct qubits ei ⊗ ej and
ei ⊗ ek, j ̸= k in some fixed row i. Then

(σ ⊗ σT)τnr(i,j),(i,k)
= (ei ⊗ ej) · (σ ⊗ σT)τnr · (ei ⊗ ek)T

= (eiσe
T
k)⊗ (ejσ

T eTi)

= (eiσe
T
k)⊗ (eiσe

T
j)

T .

But (eiσe
T
k) = 1 if and only if σ(k) = i and this cannot

also hold for k ̸= j. Hence (σ ⊗ σT)τnr(i,j),(i,k)
= 0 for

j ̸= k, confirming that U(σ ⊗ σT) contains no CZ gates
joining qubits within a row. The result for columns fol-
lows identically.

In summary, the diagonal operators U(g ⊗ gT) are
depth-1, distance-preserving (i.e., fault-tolerant) logical
operators of SHY PS(r). It’s natural therefore to pro-
ceed as in Section IXA and consider the subgroup of
logical diagonal operators they generate.

B. Generating in-block operators

In this section we show that the fault-tolerant logi-
cal operators B generate all diagonal Clifford operators
of the SHYPS codes. Furthermore, the compilation of
operators using this generating set scales asymptotically
optimally. For exact costings of the overhead required
to implement a range of diagonal operators we refer the
reader to Table III, but first we focus on proving the
following result.

Theorem X.6. Every in-block logical diagonal Clif-
ford operator (modulo Paulis) in SHY PS(r) is imple-
mentable by a sequence of at most r2 +5r+2 generators
from B for r ≥ 4 and at most r2 + 8r + 2 generators for
r = 3.

As aforementioned, the diagonal Clifford operators
(modulo Paulis) of the SHY PS(r) code are in one-to-
one correspondence with symmetric matrices SYMr2(2).
Hence Theorem X.6 is an immediate corollary of the fol-
lowing result.

Theorem X.7. Let S ∈ SYMr2(2). Then there exist
A1, . . . , Ap ∈ GLr(2) for some p ≤ r2+5r+2 (r2+8r+2
when r = 3) such that

S =

p∑
i=1

(Ai ⊗AT
i)τ.

Similar to the work in Section IX, the strategy for
proving Theorem X.7 is to first show an analogous (and
typically stronger) result over (possibly) non-invertible
matrices. We then adapt such a decomposition to invert-
ible matrices, while minimising any additional overhead
incurred.

Lemma X.8. Let S ∈ SYMr2(2). Then there exist
M1, . . . ,Ma ∈Mr(2) for some a ≤ r2 + 1, such that

S =

a∑
i=1

(Mi ⊗MT
i)τ.

The proof of Lemma X.8 uses the following notions of
matrix reshaping

Definition X.9. (Flatten) Let M = (mi,j) ∈ Mr2(2).

Then the flatten function fl :Mr(2) −→ F1×r2

2 is defined

fl :

m1,1 . . . m1,r

...
...

mr,1 . . . mr,r

 7→ (
m1,1 . . . m1,r m2,1 . . . mr,r

)
.

By considering the action of fl(M) on basis vectors
eTi ⊗ eTj and eTj ⊗ eTi , we see immediately that fl(MT) =
fl(M) · τ .
(Reshape) Given M ∈Mr2(2), there exist block ma-

trices Mi,j such that

M =
∑

1≤i,j≤r

Ei,j ⊗Mi,j .

Then the re-shape function re : Mr2(2) −→ Mr2(2) is
defined as follows

re :M 7→
∑

1≤i,j≤r

fl(Ei,j)
T · fl(Mi,j)

I.e., the successive rows of re(M) are formed by flattening
successive blocks of M

For example

re :

1 0 1 1
1 0 1 0
1 1 1 1
0 0 0 0

 7→
1 0 1 0
1 1 1 0
1 1 0 0
1 1 0 0

 .

24

The effect of the reshape map is more evident on how it
acts on basis vectors

(ei1 ⊗ ei2)re(M)(eTj1 ⊗ eTj2) = (ei1 ⊗ ej1)M(eTi2 ⊗ eTj2).

I.e., it effectively swaps the indices i2 and j1. This is thus
linear and also self-inverse.

Proof. (Proof of Lemma X.8) The proof strategy is to
use a binary Cholesky decomposition [13] that decom-
poses symmetric matrices as sums of outer products of
vectors with themselves. To account for τ we don’t apply
this directly to the desired S but rather a transformed
matrix S′ = re(S ·τ)·τ - undoing this reshaping later cor-
respondingly transforms outer products into summands
of the desired tensor product form.

First observe that

(ei1 ⊗ ei2)S′(eTj1 ⊗ eTj2) = (ei1 ⊗ ei2)re(S · τ) · τ(eTj1 ⊗ eTj2)
= (ei1 ⊗ ej2)S(eTj1 ⊗ eTi2)
= (ej1 ⊗ ei2)S(eTi1 ⊗ eTj2)
= (ej1 ⊗ ej2)S′(eTi1 ⊗ eTi2),

where we have unpacked the definitions of τ, re and used
that S is symmetric. Hence, by definition S′ is also sym-
metric.

Now we apply the work of [13] to decompose S′ via a
binary analogue of the well-known Cholesky decomposi-
tion. Let a = rank(S′) + (

∏
(Si,i + 1) mod 2) (i.e., the

rank of S′, with an additional plus one if all diagonal
entries are zero, so in particular a ≤ r2 + 1). Then there

exists L ∈ Fr2×a
2 such that S′ = LLT [13, Thm. 1].

Next observe that the matrix product LLT may be
rewritten as a sum of outerproducts of the columns lk of
L with themselves

S′ = LLT = (l1 . . . la)(l1 . . . la)
T =

a∑
k=1

lkl
T
k .

Considering a single summand of the form llT , there ex-
ists M = (mi,j) ∈ Mr(2) such that lT = fl(M) and
hence

llT =

m1,1

...
mr,r

 (m1,1, . . . ,mr,r) =
∑
i,j

mi,jfl(Ei,j)
T fl(M).

It then follows that

re−1(llT · τ) =
∑
i,j

mi,j · re−1
(
fl(Ei,j)

T fl(M) · τ
)

=
∑
i,j

mi,j · re−1
(
fl(Ei,j)

T fl(MT)
)

=
∑
i,j

mi,jEi,j ⊗MT

=M ⊗MT .

Finally, letting fl(Mk) = lTk for each column lk, we have
by linearity that

S = re−1(S′ · τ) · τ

=

a∑
k=1

(Mk ⊗MT
k)τ.

Example X.10. Consider

S =

0 0 0 0
0 0 1 1
0 1 0 0
0 1 0 1

 7→ S′ = re(S · τ) · τ =

0 0 0 1
0 0 0 1
0 0 0 0
1 1 0 1

 .

Applying the constructive algorithm in [13, Sec. 3] we
produce a minimal binary Cholesky decomposition

S′ =

1 1
1 1
0 0
0 1

(1 1 0 0
1 1 0 1

)
.

Isolating the summand corresponding to the second col-
umn, we have

re−1(l2l
T
2 τ) = re−1

1 1 0 1
1 1 0 1
0 0 0 0
1 1 0 1

 τ

=

1 0 1 0
1 1 1 1
0 0 1 0
0 0 1 1

=

(
1 1
0 1

)
⊗
(
1 1
0 1

)T

.

Handling the first column l1 similarly then yields

S =

(
1 1
0 0

)
⊗
(
1 1
0 0

)T

· τ +
(
1 1
0 1

)
⊗
(
1 1
0 1

)T

· τ.

With Lemma X.8 established, we now investigate
methods for converting a sum of non-invertibleMi⊗MT

i

into a similar decomposition comprising only invertible
matrices.
To this end, it is useful to set up some notation and

collect a few preliminary lemmas.

Definition X.11. Let A,B ∈Mr(2). We define

S(A) := (A⊗AT)τ

D(A,B) := S(A+B) + S(A) + S(B)

= (A⊗BT +B ⊗AT)τ

In this notation, the goal is to find a minimal number
of Ai ∈ GLr(2) such that S =

∑
i S(Ai). Similarly to

25

Section IX, it useful to introduce a weight function to
track this

Definition X.12. Let S ∈ SYMr2(2). The weight of
S, denoted w(S), is the minimal number of Ai ∈ GLr(2)

such that S =
∑w(S)

i S(Ai).

We remark that terms of the formD(A,B) are the nat-
ural “cross-terms” incurred when splitting non-invertible
matrices into sums of invertibles - dealing with these is
the main remaining challenge.

The following facts are immediate from the definitions

Lemma X.13. Let A,B,Ci ∈ Mr(2). Then the follow-
ing hold

(a) D(A,B) = D(B,A)

(b) D(A,B) = D(A,A+B)

(c) D(A,
∑

i Ci) =
∑

iD(A,Ci).

Lemma X.14. Let A,B ∈ Mr(2) and assume there ex-
ists C ∈ GLr(2) such that

A+ C,B + C,A+B + C ∈ GLr(2).

Then

D(A,B) = S(A+C)+S(B+C)+S(A+B+C)+S(C).

In particular w(D(A,B)) ≤ 4.

Lemma X.15. Let A,B ∈ Mr(2) and P,Q ∈ GLr(2).
Then

(P ⊗Q)S(A)(QT ⊗ PT) = S(PAQT)

(P ⊗Q)D(A,B)(QT ⊗ PT) = D(PAQT , PBQT)

Hence for M ∈Mr2(2), we have that

w(M) = w((P ⊗Q)M(QT ⊗ PT)).

In particular, w(D(A,B)) = w(D(PAQT , PBQT)).

Proof. (Proof of Theorem X.7) By Lemma X.8 there ex-
ists a decomposition

S =

a∑
i=1

(Mi ⊗MT
i)τ, (13)

for some a ≤ r2 + 1. We first consider the addition of
diagonal matrices Di to each component Mi - as seen
in Section IX, this can be advantageous as the space
spanned by the Di has dimension at most r. So, ap-
plying Lemma IX.12, there exist invertible matrices Ai

and diagonal Di such that Mi = Ai +Di. It follows that

S =

a∑
i=1

S(Mi) (14)

=

a∑
i=1

S(Ai) + S(Di) +D(Ai, Di). (15)

Note that each diagonal Di may itself be written in the
standard diagonal basis Ej,j ∈Mr(2) to yield

S(Di) =

r∑
j=1

di,j

S(Ej,j) +D(Ej,j ,
∑
k>j

di,kEk,k)

 ,

(16)

for some di,j ∈ F2. Then substituting each decompo-
sition (16) into (15), expanding each D(Ai, Di) in the
digaonal basis, and collecting terms by repeated use of
Lemma X.13 (a) and (c) yields

S =

a∑
i=1

S(Ai)+

r∑
j=1

ejS(Ej,j)+

r∑
j=1

fjD(Ej,j , Bj), (17)

for some ei, fi ∈ F2 and Bi ∈ Mr(2). Note in particular
that the latter two sums contain at most r terms each,
and that the Bj are not necessarily invertible. Of course
each Ej,j ∈ Mr(2)\GLr(2) also, but applying Lemma
IX.14, there exists a single r-cycle permutation matrix σ
such that each Ei,i + σ ∈ GLr(2). By substituting

S(Ei,i) = S(Ei,i + σ) + S(σ) +D(Ei,i, σ)

into (17) and again collecting like terms by applying
Lemma X.13 yields

S =

a∑
i=1

S(Ai) +

r∑
j=1

ejS(Ej,j + σ) (18)

+ S(σ) · (
∑
j

ej) +

r∑
j=1

f ′jD(Ej,j , B
′
j). (19)

To summarise, up to the addition of
∑r

i f
′
iD(Ei,i, B

′
i),

we have that w(S) ≤ r2+r+2. It thus remains to handle
this final term. Moreover, as there exist permutation ma-
trices P,Q ∈ GLr(2) such that Ej,j = PE1,1,Q

T , we may
restrict our attention to a single summand D(E1,1, B1)
by Lemma X.15.

Now again using Lemma X.15, observe that if
P,Q ∈ GLr(2) are such that PE1,1Q

T = E1,1, then
w(D(E1,1, B1)) = w(D(E1,1, PB1Q

T)). But this holds
for a large range of P and Q:(

1 pT

0 P ′

)
· E1,1 ·

(
1 0T

q Q′

)
= E1,1,

for all vectors p, q ∈ Fr−1
2 and P ′, Q′ ∈ GLr−1(2). Left

and right multiplication by such P and QT allows us to
perform a modified Gaussian elimination on B1, reducing

26

it to the form

B′
1 =

(
X

D

)
=

a b 0 0
c d 0 0
0 0 e 0
0 0 0 f

D

 ,

where D ∈ Diagr−4(2) is diagonal.
Now if r = 4, 5 we check computationally that for all

B′
1 there exists C ∈ GLr(2) such that C,C + B′

1, C +
E1,1, C+B′

1+E1,1 are invertible. Thus by Lemma X.14,
w(D(E1,1, B

′
1)) ≤ 4, and by the arguments above, all

w(D(Ej,j , Bj)) ≤ 4.
If r ≥ 6 then first note by the r = 4 computa-

tions, there exists an invertible C ∈ GL4(2) such that
X +C,E1,1 +C and X +E1,1 +C are all invertible. To
handle the lower block of dimension r − 4 ≥ 2, if D is
not full rank, then we choose C ′ to be any (r − 4)-cycle
permutation matrix and D + C ′ ∈ GLr−4(2) by Lemma
IX.14. If D = Ir−4, then it suffices to choose any invert-
ible C ′ that fixes only the zero vector (and such a matrix
always exists for r − 4 ≥ 2).

Hence letting C ′′ =

(
C

C ′

)
, we have that C ′′

E1,1 + C ′′ =

(
E1,1 + C

C ′

)
,

B′
1 + C ′′ =

(
X + C

D + C ′

)
,

B′
1 + E1,1 + C ′′ =

(
X + E1,1 + C

D + C ′

)
are all invertible. Thus as above, we have by
Lemma X.14, w(D(E1,1, B

′
1)) ≤ 4, and similarly, all

w(D(Ej,j , Bj)) ≤ 4. In conclusion, when r ≥ 4 we collect
terms in (18), to see that there exists at most r2+5r+2
matrices Ai ∈ GLr(2) such that S =

∑
i S(Ai).

It remains to consider the case r = 3. Here we note
that provided

B′
1 ̸=

0 1 0
1 0 0
0 0 1

 ,

1 1 0
1 0 0
0 0 1

 , (20)

we may proceed as above, as there exists a choice of
C ∈ GL3(2) that satisfies the conditions of Lemma X.14.
However if B′

1 is one of the two exclusions in (20) then
no such C exists, and we in fact check computationally
that w(D(E1,1, B

′
1)) = 7. The r possible terms of this

form thus incurs an additional cost of up to 7r, giving an
overall bound of r2 + 8r + 2.

In summary, we have demonstrated that all logical di-
agonal Clifford operators of the SHY PS(r) codes may be

implemented fault-tolerantly, using generators of (phys-
ical) depth 1. Moreover, the total depth required for
an arbitrary diagonal operator is bounded above by
r2 +5r+2 (for r ≥ 4). Comparing the number of gener-
ators

|B| = |GLr(2)| ∼ 2r
2

to the total number of diagonal operators

|SYMr2(2)| = 2r
2(r2+1)/2,

we see that our achieved compilation in O(r2) steps is
optimal up to a constant factor. Moreover as k = r2

is the number of logical qubits, this mirrors the case
of k un-encoded qubits: given a symmetric matrix S ∈
SYMk(2), the depth of the (un-encoded) diagonal Clif-
ford operator is determined by solving an associated
graph colouring problem (ignoring diagonal entries, treat
S as an adjacency matrix). Colouring the complete graph
on k vertices requires k+1 colours, and correspondingly,
there exist diagonal operators that require depth k + 1.
Hence encoding using the SHYPS codes incurs a negligi-
ble depth penalty.

C. Compiling specific operators

Theorem X.6 demonstrates efficient compiling of arbi-
trary (in-block) diagonal Clifford operators in the SHYPS
codes. However, costings of single one- and two-qubit
logical gates are also of interest, and we examine these
below. For a full breakdown of logical diagonal Clifford
costs, we refer the reader to Table III

Let’s first consider S circuits.

Lemma X.16. Let S(i,j) be a single qubit logical S oper-
ator corresponding to the (i, j)-position in the r×r logical
qubit array of SHY PS(r). Then the following holds

1. There exists an implementation of S(i,j) using 6 (9
when r = 3) generators from B.

2. There exists a depth-1 operator in B that performs
S(i,j) (plus additional diagonal gates, in general)

Proof. Recall that the operator S(i,j) corresponds to the
symmetric matrix B with single nonzero entry in the
(i, j)th diagonal position. In fact, B = (Ei,j ⊗ET

i,j)τr =:
S(Ei,j). By Lemma IX.7 there exists X ∈ GLr(2) such
that Ei,j +X ∈ GLr(2) and this yields

S(Ei,j) = S(Ei,j +X) + S(X) +D(Ei,j , X).

Observing that there exists permutations matrices P,Q
such that PEi,jQ

T = E1,1, we follow the proof of The-
orem X.7) to show that w(D(E1,1, X)) ≤ 4 and hence
w(B) ≤ 6, provided r ≥ 4. If r = 3 then the associated
X above may produce one of the exceptions listed in (20),
yielding w(B) ≤ 7 + 2 = 9 instead.

27

For the second statement, it suffices to choose any g ∈
GLr(2) such that (g⊗ gT) · τr has a nonzero entry in the
(i, j)th diagonal position. Well

(ei ⊗ ej) · ((g ⊗ gT) · τr) · (ei ⊗ ej)T = eige
T
j ⊗ ejgT eTi

= eige
T
j ⊗ (eige

T
j)

T

= (g)i,j .

So it suffices to choose any invertible g ∈ GLr(2) with
nonzero (i, j)th entry. A simple choice is the permutation
matrix corresponding to the 2 cycle (i, j) - note that such
a choice minimises the weight of (g ⊗ gT) · τr and thus
has a ‘minimal’ logical action (containing S(i,j)).

Corollary X.17. Let SV be a logical S circuit, where the
(a, b)th entry of V ∈Mr(2) indicates an S gate performed
on the (a, b)th qubit. If V is invertible then there exists
a depth-1 generator that implements a logical diagonal
Clifford operator containing SV .

We are similarly able to produce low-depth implemen-
tations for isolated CZ gates in the SHYPS codes.

Lemma X.18. Let (a, b) ̸= (c, d) be qubit positions in the
logical qubit array of SHY PS(r). Then there exists an
implementation of CZ(a,b),(c,d) in physical depth 4, using
4 generators from B.
Proof. Let S = D(Ea,d, Ec,b). Clearly S is symmetric
and contains a single pair of off-diagonal entries. Fur-
thermore, (a, b) ̸= (c, d) implies that

(ea ⊗ eb)S(ec ⊗ ed)T = eaEa,de
T
d ⊗ ebEb,ce

T
c

= 1.

Hence the nonzero entries in S correspond to the log-
ical operator CZ(a,b),(c,d). Next observe that there ex-

ist row and column permutations P and QT such that
the nonzero entries of PEa,dQ

T , PEc,bQ
T lie below the

diagonal. So in particular, adding the identity Ir to
these lower diagonal matrices is guaranteed to be in-
vertible. The result then follows by Lemma X.14 and
Lemma X.15.

Further results for low-depth implementations of spe-
cific diagonal operators are given in Section XI. There we
shall see that for a fixed set of logical qubits, the ability
to perform any logical diagonal on said qubits, relates to
low-depth implementations of arbitrary Hadamard cir-
cuits.

D. Multi-block diagonal Cliffords

To generate logical diagonal Clifford circuits across
multiple blocks of our chosen SHYPS code, we rely on the
results of Section IXA by Hadamard transforming cross-
block CNOT operators. Furthermore, due to the ten-
sor product form of the gauge generators in the SHYPS
codes, an all-qubit logical Hadamard is particularly easy
to implement.

Lemma X.19. In SHY PS(r), the physical Hadamard-
SWAP operator H1 · · ·Hn2τnr

implements the logical op-
erator H1 · · ·Hr2τr.

Proof. This is clear from the definitions of GX , LX etc,
and the fact that (P ⊗G)τnr

= τr(G⊗ P).

In essence, the all-qubit logical Hadamard is imple-
mented by an all-qubit physical Hadamard. As the
following Lemma for cross-block CZ operators demon-
strates, the additional SWAP circuits τn and τr can be
easily accounted for by adjusting the automorphisms in
our depth-1 CNOT generators. Thus cross-block CZ
circuits may be implemented analogously to cross-block
CNOT operators, by a low-depth sequence of transversal
CZ circuits.

Lemma X.20. Let A ∈Mr2(2) and

U1,2(A) =

r∏
i,j=1

CZ
ai,j

i,r2+j .

be the corresponding cross-block circuit of logical CZ
gates. Then U1,2(A) is implemented by a sequence of
at most r2 + r + 4 transversal physical CZ circuits.

Proof. First observe that U has symplectic matrix repre-
sentation

I 0 0 A
0 I AT 0
0 0 I 0
0 0 0 I

 =

 I 0 0 0
0 0 0 I
0 0 I 0
0 I 0 0

I A 0 0
0 I 0 0
0 0 I 0
0 0 AT I

·

 I 0 0 0
0 0 0 I
0 0 I 0
0 I 0 0

 .

Inserting two instances of τ2r = 1 then yields

U1,2(A) =

 I 0 0 0
0 0 0 I
0 0 I 0
0 I 0 0

 I 0 0 0

0 τr 0 0
0 0 I 0
0 0 0 τr

·

I A · τr 0 0
0 I 0 0
0 0 I 0
0 0 (A · τr)T I

 I 0 0 0

0 τr 0 0
0 0 I 0
0 0 0 τr

·

 I 0 0 0
0 0 0 I
0 0 I 0
0 I 0 0

 . (21)

So this is exactly a cross-block CNOT circuit given by
off-diagonal matrix A · τr, conjugated by the logical

Hadamard-SWAP operator H⊗r2τr on the second code

28

block. In circuit form:

H τr Aτr τr H

Combining Theorem IX.4 and Lemma X.19, there ex-
ists a ≤ r2 + r + 4 automorphisms πi = σi1 ⊗ σi2 ∈
Aut(SHY PS(r)) such that U1,2(A) is implemented by
the sequence of conjugated transversal CNOT operators

(In2
r
⊗H⊗n2

rτnr
) ·

a∏
i=1

n2
r∏

j=1

CNOTj,π−1
i (j)+n2

r
(22)

· (In2
r
⊗ τnr

H⊗n2
r), (23)

Now, conjugating by τnr
exchanges the factors in au-

tomorphisms πi, while the Hadamard action transforms
every physical CNOT into a physical CZ gate. Hence
letting ρi = σi2 ⊗ σi1 ∈ Aut(SHY PS(r)) we have that
(23) equals

a∏
i=1

 n2
r∏

j=1

CZj,ρ−1
i (j)+n2

r

 .

In particular, each bracketed term above is a logical
operator of SHY PS(r) that is evidently depth-1 and
transversal (and therefore fault-tolerant).

The following corollary is immediate by following the
proof above, but inserting the improved depth bound
Lemma IX.22 for isolated CNOT gates.

Corollary X.21. Any single logical CZ operator between
two SHYPS code blocks is implementable fault-tolerantly
in depth at most 4.

Generalising the above operator to Ui,j(Ai,j), it follows
that an arbitrary b-block diagonal Clifford consisting of
only cross-block CZ gates may be written

∏
1≤i<j≤b

Ui,j(Ai,j) =

I 0 A1,1 · · · A1,b

I AT
1,1 0 · · · A2,b

. . .
...

...
. . .

...
I AT

1,b AT
2,b · · · 0

I
I

. . .

I

.

We now cost this operator in a similar manner to Sec-
tion IX. As in Lemma IX.20 we restrict our attention to
b = 2a blocks for ease of presentation.

Lemma X.22. Let b = 2l. The diagonal operator U =∏
1≤i<j≤b Ui,j(Ai,j) on b blocks requires at most b/2 · (b−

1) block-to-block operators Ui,j(A), implemented over at
most b− 1 rounds.

Proof. The number of operators required is clear and so
we need only prove the time constraint. We proceed by
induction: in the base case b = 2, U = U1,2(A) and
hence requires exactly 1 round. Next assume that the
result holds for b/2 blocks and observe that

U =

 ∏
1≤i<j≤b/2

Ui,j(Ai,j) ·
∏

b/2+1≤i<j≤b

Ui,j(Ai,j)

·

∏
1≤i,j≤b/2

Ui,j+b/2(Ai,j)

=: [U1 · U2] · U3.

As U1 and U2 act on disjoint sets of b/2 blocks, by as-
sumption they can be simultaneously implemented in
b/2 − 1 rounds. The remaining (b/2)2 operators that
make up U3 are then implementable in a further b/2
rounds (scheduled via a cyclic shift as in the proof of
Lemma IX.20), giving a total of b− 1.

The following Corollary is immediate by combining
Lemma X.22 and Lemma X.20

Corollary X.23. The diagonal operator U =∏
1≤i<j≤b Ui,j(Ai,j) on b blocks is implemented in

depth at most (b− 1)(r2 + r + 4).

To complete this section on diagonal Clifford opera-
tors, we combine our work on in-block and cross-block
operators in Theorem X.24. Note that the results of this
section are also presented in Table III, while Section XI
contains additional work on diagonal operators that are
useful for compiling Hadamard circuits.

Theorem X.24. Any logical diagonal Clifford opera-
tor (modulo Paulis) on b-blocks of SHY PS(r), is im-
plemented in depth at most

br2 + r(b+ 4) + (4b− 2), r ≥ 4,

16b+ 25 = br2 + r(b+ 7) + (4b− 2), r = 3.

Furthermore, such implementations require no auxiliary
qubits, and thus have zero space cost.

Proof. As the subgroup of diagonal Clifford operators is
abelian, we may implement an arbitrary operator as a
sequence of parallel in-block gates, followed by any nec-
essary cross-block gates. We therefore accrue an initial
circuit of depth r2 + 5r + 2 (or r2 + 8r + 2 when r = 3)
for in-block gates by Theorem X.6, regardless of block
count. This is then followed by additional depth of at
most (b− 1)(r2 + r + 4) by Corollary X.23.

It’s clear that implementing diagonal operators in
SHYPS codes incurs zero space overhead: in-block di-
agonal operators are implemented directly using logical
generators from B, whereas cross-block logical CZ gates
mirrors the case of cross-block CNOT operators seen in
Section IX.

29

XI. HADAMARD-SWAP OPERATORS IN
SHYPS CODES

To complete the analysis of logical Clifford implemen-
tations in the SHYPS codes, we need lastly to charac-
terize the Hadamard gates. However as Lemma X.19
suggests, it is natural to consider Hadamard circuits in
conjunction with SWAP circuits as together these oper-
ators generate a subgroup of Sp2k(2) called the signed-
symmetric group or hyperoctahedral group.
We find that logical permutations within a single

SHYPS code block present significant depth savings com-
pared to generic CNOT circuits (O(r) versus O(r2)).
Moreover, in Section XIB we show that the depth of
multi-block permutations does not grow with the num-
ber of blocks b. Lastly, we examine arbitrary Hadamard
circuits in Section XIC. Here we combine our work on
in-block permutations with certain depth-1 diagonal cir-
cuits, to implement Hadamard circuits in depth O(r).

A. In-block permutations

First recall Lemma IX.1 that for any choice of g1, g2 ∈
GLr(2), the logical CNOT circuit

(
I g1 ⊗ g2
0 I

)
∈

GL2r2(2) may be implemented by a depth-1 physical
CNOT circuit. Moreover, these depth-1 circuits generate
the full algebra of upper-right cross block CNOT opera-
tions

{
(
I A
0 I

)
: A ∈Mr2(2)}.

To achieve the full algebra, we generically require O(r2)
depth-1 generators but let’s restrict our attention to cer-
tain permutations in GLr2(2): For σ1, . . . , σr ∈ Sr we
define

A(σi) :=

σ1

σ2
. . .

σr

 =

r∑
i=1

Ei,i ⊗ σi,

and then for an additional υ ∈ Sr, consider the product

A(σi) · (υ ⊗ I) ∈ GLr2(2). (24)

Now clearly these elements are permutations of the
r2 logical qubits, but moreover they form a subgroup
isomorphic to Sr

r ⋊ Sr ≤ Sr2 - this can be observed by
checking that

(υ−1 ⊗ I)(
∑
i

Ei,i ⊗ σi)(υ ⊗ I) =
∑
i

Eυ−1(i),υ−1(i) ⊗ σi

=
∑
i

Ei,i ⊗ συ(i).

To understand exactly how this subgroup acts, first con-
sider the action of A(σi):

(
∑
j,k

αj,kej ⊗ ek)A(σi) = (
∑
j,k

αj,kej ⊗ ek)
r∑

i=1

Ei,i ⊗ σi

=

r∑
i=1

∑
k

αi,kei ⊗ ekσi

=

r∑
i=1

∑
k

αi,kei ⊗ eσ−1
i (k).

In particular for each chosen σi in A, there is a
corresponding permutation action on the basis vectors
ei ⊗ e1, . . . , ei ⊗ er. In qubit terms, A(σi) performs a
permutation σi along each row of the r × r grid. Simi-
larly, it’s easy to check that the action of (υ⊗ I) on basis
vectors induces a permutation of the rows of qubits.
Expanding the product (24) we see that

A(σi) · (υ ⊗ I) =
r∑

i=1

Ei,υ−1(i) ⊗ σi. (25)

Since Ei,υ−1(i) · υ−1 = Ei,i, it follows from Lemma IX.14

that Ei,υ−1(i) · υ−1 + ρ ∈ GLr(2) for any r-cycle ρ and
hence Ei,υ−1(i) + ρυ ∈ GLr(2). Collecting terms in
Eq. (25) then yields

A(σi) · (υ ⊗ I) =
∑
i

(Ei,υ−1(i) + ρυ)⊗ σi

+ ρυ ⊗ (
∑
i

σi).

Finally, applying Lemma IX.7 to the (possibly) non-
invertible permutation sum in the second term provides a
decomposition of A(σi)·(υ⊗I) into at most r+2 matrices
g1 ⊗ g2 ∈ Glr(2)2. It follows that the cross-block CNOT

circuit

(
I A(σi) · (υ ⊗ I)
0 I

)
and the in-block CNOT cir-

cuit

(
A(σi) · (υ ⊗ I) 0

0 I

)
are implemented by r+2 depth-

1 generators, respectively. Here for the in-block operator
we have used the cross-block trick from Lemma IX.18.

Now in the analysis above, we could have instead cho-
sen matrices that act on columns rather than rows, i.e.,
of the form:

B(σi) · (I ⊗ υ) := (

r∑
i=1

σi ⊗ Ei,i)(I ⊗ υ).

By the same arguments, these generate a subgroup iso-
morphic to Sr

r ⋊ Sr, implementable using at most r + 2
depth-1 physical generators. Observe however that these
two subgroups, called say Krow and Kcol, are distinct.
They are also maximal subgroups of Sr2 by the famous
Onan-Scott Theorem [14], and hence Sr2 = ⟨Krow,Kcol⟩.

30

I.e., these two particular collection of logical SWAP cir-
cuits, generate all permutations on a code block of r2

logical qubits. In fact, one can show that Sr2 = Krow ·
Kcol ·Krow [15], yielding the following result:

Proposition XI.1. Any logical permutation on a sin-
gle SHY PS(r) code block is implemented fault-tolerantly,
using CNOT generators A∪AT , in depth at most 3(r+2).

In-block permutations can be used to derive a useful
result on cross-block CNOT circuits: depth-1 cross-block
CNOT circuits can be implemented in O(r) depth, rather
than O(r2) as required for general cross-block CNOT cir-
cuits.

Corollary XI.2. Any logical depth-1 cross-block CNOT
circuit across two SHY PS(r) code blocks can be imple-
mented in depth no greater than 8r + 18, using CNOT
generators A ∪AT .

Proof. Take an arbitrary logical depth on cross-block
CNOT circuit

X =

(
I A
0 I

)
∈ GL2r2(2).

Since X is depth-1, the matrix A ∈ Mr2(2) has at
most a single nonzero entry in each row and column.
Therefore, there exists a permutation P ∈ Sr2 such that
AP ∈ Diagr2 . We first rewrite X as

X =

(
I 0
0 P

)(
I AP
0 I

)(
I 0
0 P−1

)
. (26)

As any matrix in Diagr2(2) has tensor rank at most r,
it follows from Proposition IX.9 that w(AP) ≤ 2r + 6.
Therefore, the cross-block CNOT operator appearing in
Eq. (26) can be implemented using at most 2r+6 depth-1
generators from A.
To conclude the proof, we need to add the cost of the

in-block permutations P and P−1. By Proposition XI.1,
it follows that P and P−1 can each be implemented in
depth at most 3r+6, which results in a maximal physical
depth for X of 8r + 18.

A similar result exists for depth-1 cross-block CZ cir-
cuits.

Corollary XI.3. Any logical depth-1 cross-block CZ cir-
cuit across two SHY PS(r) code blocks can be imple-
mented in depth no greater than 8r + 18.

Proof. Take any logical depth-1 cross-block CZ circuit U .
First observe that U has symplectic matrix representa-
tion

I 0 0 A
0 I AT 0
0 0 I 0
0 0 0 I

 , (27)

where the matrix A has at most one nonzero entry in
each row or column. Similar to the strategy used in the
proof of Lemma X.20, we first rewrite U as a cross-block

CNOT operator, conjugated by H⊗r2τr on the second
code block:

H τr Aτr τr H

Note that since A has rows and columns of weight at
most one, so has Aτr. We decompose the depth-1 cross-
block CNOT operator in the circuit above as we did in
the proof of Lemma IX.1:

H τr P AτrP PT τr H

where P ∈ Sr2 is such that AτrP ∈ Diagr2(2). Conju-

gating P by H⊗r2τr yields a different permutation P ′,
and hence we can rewrite the previous circuit as

P ′ H τr AτrP τr H P ′T

Now, since AτrP ∈ Diagr2(2), its tensor rank is no
greater than r. Therefore, Proposition IX.9, implies that

the cross-block CNOT operator

(
I AτrP
0 I

)
∈ GL2r2 can

be implemented using at most 2r+6 depth-1 generators
from A. Following the same reasoning as in the proof of
Lemma X.20, we then find that U can be implemented
using two logical in-block permutations and up to 2r+6
transversal physical CZ circuits.

Finally, implementing the logical in-block permuta-
tions P ′ and P ′T requires at most depth 2 · (3r + 6) by
Proposition XI.1. We thus find that U can be imple-
mented in depth at most 8r + 18.

B. Multi-block permutations

Next, we turn to logical multi-block permutations.
One might initially expect that the depth of their physical
implementation would scale with the total number of log-
ical qubits (i.e., br2 for b code blocks of SHY PS(r)) like
it does for, e.g., multi-block CZ circuits. However, we will
show below that general permutations can be done much
more efficiently. In particular, they are implementable
in a depth that does not scale with the number of code
blocks, but simply with the number of logical qubits per
block.

The strategy to efficiently implement a general per-
mutation is to decompose it as the product of two in-
volutions (i.e., two depth-1 SWAP circuits). The logical
SWAP gates in these involutions may then be scheduled
efficiently using an edge-coloring algorithm, and the re-
sulting number of required rounds does not scale with

31

the number of code blocks but rather with the number
of qubits per block. Since individual SWAP gates can be
performed in depth O(1), it then follows that multi-block
permutations can be performed in detph O(r2).

Theorem XI.4. A logical permutation operator on b
code blocks of SHY PS(r) can be implemented in depth
36r2 + 3r + 6.

Proof. Take any permutation operator P acting on br2

qubits. We first write P as the product of two involu-
tions: P = A · B. Each of these involutions can in turn
be written as a product of an involution consisting of in-
block SWAP operators, and one consisting of cross-block
SWAP operators, denoted by AIB and ACB, respectively.
Note that in-block permutations normalize cross-block
involutions. Hence, we find P = ACBAIBBIBBCB.

It follows form XI.1 that AIBBIB can be implemented
in depth 3r+6 It remains to determine the depth required
to implement the cross-block components ACB and BCB.

Consider a multigraph GA with b vertices, correspond-
ing to the b code blocks, and an edge between two vertices
for each two-cycle in ACB swapping qubits between the
corresponding code blocks (i.e., if m qubits are swapped
between a pair of code blocks, the corresponding vertices
are connected by m edges). A theorem by Shannon [16]
states that a proper edge coloring of a multigraph G with
maximum vertex degree ∆(G) requires at most 3/2∆(G)
colors. Since A is an involution, it immediately follows
that ∆(GA) ≤ r2. Therefore, ACB can be implemented
in at most 3/2r2 rounds, each containing at most a sin-
gle SWAP operator per code block. By Lemma IX.22
a single logical CNOT operator between code blocks is
implementable in depth at most 4, and hence a single
SWAP operator between code blocks is implementable in
depth at most 12. It follows that ACB is implementable
in depth at most 18r2, and the same applies to BCB.

We conclude that P is implementable in depth at most
36r2 + 3r + 6.

C. Hadamard circuits

We now turn to implementing arbitrary Hadamard op-
erators in the SHYPS codes. Recall that SHYPS codes
have a fold-transversal Hadamard operator H⊗nτnr ,
which implements the logical Hadamard-SWAP opera-

tor H⊗r2τr (see Lemma X.19). We may then apply the
result on in-block permutations from Proposition XI.1 to
τr, to cost the isolated all-qubit logical Hadamard.

Corollary XI.5. The all-qubit logical Hadamard opera-

tor Hr2 on SHY PS(r) is implemented in depth at most
3r + 10.

Proof. By Lemma X.19, H⊗r2 is implemented by depth-1
all-qubit physical Hadamard H⊗n gates, composed with
τnr

and τr. As τnr
is a physical SWAP circuit, it is

implementable in a depth-3 CNOT circuit. Whereas τr ∈
Sr2 requires depth at most 3r+6 by Proposition XI.1.

As for the fault-tolerance of this implementation, we
recall from the discussion in Lemma X.5 that τn only
exchanges qubits lying in different rows and columns of
the physical qubit array. Thus a single gate failure during
implementation will not lead to a weight two Pauli in
the support of a single logical operator, and the circuit is
therefore distance preserving. This guarantees the fault-

tolerance of H⊗r2 . We note that for qubit architectures
with high-connectivity, such a swap may be implemented
in practice by simple qubit relabelling. This however
leads to only modest constant savings in depth.
Combined with CNOT operators and diagonal gates,

the all-qubit Hadamard is sufficient to generate all Clif-
ford operators. However for practical applications it is
desirable to more accurately cost HV for V ∈ Mr(2),
where as before, Vi,j = 1 indicates a Hadamard gate on
qubit (i, j).
To implement such arbitrary Hadamard circuits, the

following circuit identities are useful

Lemma XI.6. Let V ∈ Mr(2). Then the arbitrary
Hadamard circuit HV is implemented by repeated appli-

cation of H⊗r2 and SV .

Proof. It’s easy to check that (S ·H)3 = (1 + i)/
√
2 · I2,

i.e., the identity up to global phase. Hence because H
has order 2,

(SV ·H⊗r2)2SV = HV .

Lemma XI.7. Let V ∈Mr(2) with Vi,j = 1 for an even
number of entries. Then the arbitrary Hadamard circuit

HV is implemented by repeated application of H⊗r2 , any
depth-1 circuit of CZ gates with support strictly on qubits
{(i, j) | Vi,j = 1}, and a qubit permutation.

Proof. It is readily verified that the following circuit iden-
tity holds:

(CZ1,2 · (H ⊗H))3 = SWAP1,2. (28)

Since H has order two, one then finds((∏
{a,b}∈P

CZa,b

)
·H⊗r2

)2

·
(∏
{a,b}∈P

CZa,b·SWAPa,b

)
= HV ,

where P is any partition of the set {(i, j) | Vi,j = 1} into
subsets of size 2. The lemma now follows from the fact
that

∏
{a,b}∈P CZa,b is a depth-1 circuit.

These two lemmas can be combined into the following
statement:

Corollary XI.8. Let V ∈ Mr(2). Then HV is im-

plemented by repeated application of H⊗r2 , any depth-1
circuit of diagonal gates with support strictly on qubits
{(i, j) | Vi,j = 1}, and a qubit permutation.

32

We now introduce a particular set of depth-1 (logical)
diagonal Clifford circuits on r2 qubits:

Ξ := {
(
I Dτr
0 I

)
∈ Sp2r2 | D ∈ Diagr2(2), D·τr ∈ SYMr2(2)}.

For convenience, we denote the set of diagonal matrices
appearing in the definition above by

ξ := {D ∈ Diagr2(2) | D · τr ∈ SYMr2(2)}.

Lemma XI.9. For integer 0 ≤ s ≤ r2, the set Ξ contains
an operator with support on exactly s qubits.

Proof. Recall that the right action of τr on any matrix
in Mr2(2) is to swap the columns (i, j) and (j, i) for 1 ≤
i ̸= j ≤ r, while leaving columns (i, i) unchanged. Hence,
the following set forms a basis of ξ:

{E(i,i),(i,i) | 1 ≤ i ≤ r}
∪ {E(i,j),(i,j) + E(j,i),(j,i) | 1 ≤ i ̸= j ≤ r}.

These basis elements of ξ correspond to diagonal oper-
ators S(i,i) and CZ(i,j),(j,i) in Ξ, respectively. The two

subsets contain r and (r2 − r)/2 elements, respectively.
The lemma now follows by observing that any integer
0 ≤ s ≤ r2 can be written as a sum a + 2b for some
0 ≤ a ≤ r and 0 ≤ b ≤ (r2 − r)/2.

Using circuits from Ξ in conjunction with Corollary
XI.8 allows us to execute a Hadamard circuit on any
number of qubits inside a SHY PS(r) code block, but we
are not free to choose which qubits. Conjugating these
circuits by a permutation operator, however, allows for
the implementation of any arbitrary Hadamard circuit
HV for V ∈Mr(2). Given that both the all-qubit logical
Hadamard operator and all logical permutations within
a SHY PS(r) code block can be implemented in depth
O(r), a depth-O(r) implementation of all logical depth-
1 diagonal operators in the aforementioned set would
guarantee that all logical Hadamard circuits are imple-
mentable in depth O(r) as well.
We first prove a small lemma on a generating set for

ξ.

Lemma XI.10. The set of matrices ξ is generated (un-
der addition) by matrices of the form

D ⊗D where D ∈ Diagr(2).

Proof. One can readily verify that (D⊗D)τr is symmet-
ric for any diagonal matrix D ∈ Mr(2). Since the set
ξ is closed under addition, it suffices to show that we
can generate all elements of some basis. Recall that the
following set forms a basis of ξ:

{E(i,i),(i,i) | 1 ≤ i ≤ r}
∪ {E(i,j),(i,j) + E(j,i),(j,i) | 1 ≤ i ̸= j ≤ r}.

The lemma follows by observing that E(i,i),(i,i) = Ei,i ⊗
Ei,i, and E(i,j),(i,j) + E(j,i),(j,i) = (Ei,i + Ej,j) ⊗ (Ei,i +
Ej,j) + Ei,i ⊗ Ei,i + Ej,j ⊗ Ej,j .

Theorem XI.11. Let D ∈ ξ. Then there exist
A1, . . . , Ap ∈ GLr(2) for some p ≤ 5r + 1, such that

D =

p∑
i=1

(Ai ⊗AT
i).

Proof. Using Lemma XI.10, we first decompose D ∈ ξ as

D =

a∑
i=1

Di ⊗Di (29)

for Di ∈ Diagr(2) and a ≤ 2r − 1. One can then
proceed in a manner similar to the proof of Theorem X.7,
starting from equation 15 (note that we would only retain
the second term in that expression). In particular, we
decompose each diagonal matrix Di in the basis {Ej,j |
1 ≤ j ≤ r}:

D =

a∑
i=1

r∑
j=1

di,jEj,j ⊗
r∑

k=1

di,kEk,k,

and then collect the terms as follows

D =

r∑
j=1

ejEj,j ⊗ Ej,j +

r∑
j=1

fj(Ej,j ⊗Bj +Bj ⊗ Ej,j),

for some ej , fj ∈ F2 and Bj ∈ Diagr(2). Provided r > 3,
one can then invoke Lemma IX.14, Lemma X.13 and
Lemma X.15 as in the proof of Theorem X.7 to obtain
that w(Dτ) ≤ 5r + 1. When r = 3 we check compu-
tationally that w(Dτ) ≤ 12 for all D of the form (29),
completing the proof.

The bound on the weight of the diagonal matrices in
ξ specified in Theorem XI.11 implies the following state-
ment when combined with Corollary X.3:

Corollary XI.12. The logical depth-1 diagonal circuits
in Ξ on code SHY PS(r) may be implemented by a phys-
ical circuit of depth at most 5r + 1.

Finally, we can combine the result above with those on
in-block logical permutations and the circuit identity in
Corollary XI.8 to obtain a O(r) depth scaling for arbi-
trary Hadamard circuits.

Theorem XI.13. Let V ∈ Mr(2). Then the arbitrary
logical Hadamard circuit HV on code SHY PS(r) may be
implemented by a physical circuit of depth 21r + 15.

Proof. Using Corollary XI.8, one can write

HV = SV ·H⊗r2 · SV ·H⊗r2 · SV · ΛV ,

33

were SV is a logical depth-1 diagonal circuit with support
strictly on qubits {(i, j) | Vi,j = 1}, and ΛV is a depth-1
logical SWAP circuit.

We first focus on the special case V ∈ SYMr(2). In
this instance, one may choose SV ∈ Ξ. The depth of
SV and ΛV follows from Corollary XI.12, and Proposi-

tion XI.1, respectively. Note that H⊗r2 · SV · H⊗r2 is
an X-diagonal operator which can be executed in the
same depth as SV . Hence, we find in a total depth of
3(5r + 1) + 3r + 6 = 18r + 9.
To obtain the cost for V ∈ Mr(2)\SYMr(2), all we

need to do is find a V ′ ∈ SYMr(2) with the same num-

ber of nonzero entries. HV and HV ′
then have the same

weight, and can be mapped onto one another by conjuga-
tion with an appropriate logical qubit permutation, this
is indeed always possible by Lemma XI.9. In particular,
for any such V , there exists a V ′ ∈ SYMr(2) and a per-
mutation P ∈ Sr2 such that fl(V) = fl(V ′) · P . One

then has HV = PHV ′
P−1. We may combine the ΛV ′

and P−1 into a single permutation, which results in total
depth 21r + 15.

We end this section by noting that a single logi-
cal Hadamard operator can be executed at a constant
cost. To see this, recall that (up to a global phase)
Si · (Hi · Si · Hi) · Si = Hi. Note that we can replace
the initial and final Si operators by some logical depth-
1 diagonal operator Di that contains Si. We may then
use Lemma X.16 to determine the total cost, noting that
Hi · Si · Hi, as an X-diagonal operator, can be imple-
mented with the same depth as Si.

Corollary XI.14. A single logical qubit Hadamard is
implementable in depth 8 (11 when r = 3).

XII. SHYPS COMPILING SUMMARY

In this section we present a novel Clifford decomposi-
tion, which we then use to synthesize arbitrary Clifford
operators in terms of the logical generators presented in
this paper. Contrary to other known Clifford decompo-
sitions, the one introduced below does not contain any
Hadamard gates. Instead, it only contains X- and Z-
diagonal operators, a CNOT circuit, and a depth-1 di-
agonal circuit. For codes where arbitrary Hadamard cir-
cuits are more expensive than depth-1 diagonal gates, as
is the case for SHYPS codes, this choice of decomposition
can be advantageous to minimize the total depth when
synthesizing a Clifford circuit.

Theorem XII.1. Any Clifford operator C ∈ Cn, can be
written as the product

C = DZ · CX ·DX ·DZ(1) , (30)

where

• DZ is a Z-diagonal operator,

• CX is a CNOT operator,

• DX is an X-diagonal operator,

• DZ(1) is a depth-1 Z-diagonal operator.

Remark. One can obtain several related decompositions
by altering the order of the constituents. In particular,
since CNOT normalizes both the group of Z-diagonal op-
erators and that of X-diagonal operators, one can move
CX above through either DZ or DX. One can also in-
vert the entire order by considering the inverse of the
decomposition (30) for Clifford operator C−1. Finally, a
decomposition of the form

C = DX · CX ·DZ ·DX(1) (31)

can be obtained by conjugating the decomposition (30) of
Clifford operator H⊗nCH⊗n by the all-qubit Hadamard
operator H⊗n. In total 12 different decompositions of
this kind can be obtained by combining these three tricks.

In order to prove Theorem XII.1, we first prove two
supporting lemmas.

Lemma XII.2. Let χ =

(
A B
C D

)
∈ Sp2n(2). Then

there exists χ′ =

(
I K
0 I

)
∈ Sp2n(2) (with K = KT),

such that χ′ · χ has invertible top-left quadrant. Fur-
thermore, K can always be chosen such that each of its
columns contains at most a single nonzero entry.

Proof. Denoting the rank of A ∈ Mn(2) by k, we may
right-multiply χ with a symplectic matrix of the form(
U 0
0 U−T

)
to perform Gaussian elimination on the first

n columns, yielding

χ ·
(
U 0
0 U−T

)
=

 A1 0
A2 0

B′

C1 C3

C2 C4
D′

 ,

where A1 ∈ Mk(2) and

(
A1

A2

)
has rank k. Note that

since

(
A
C

)
has rank n,

(
C3

C4

)
necessarily has rank n−k.

We can thus perform further Gaussian elimination on
the latter n − k columns. In particular, there exists a
V ∈ GLn−k and a permutation P ∈ Sn such that(

C3

C4

)
· V =: P ·

(
C ′

3

In−k

)
.

For U ′ =

(
Ik 0
0 V

)
U , we then have

(
P−1 0
0 P−1

)
· χ ·

(
U ′ 0
0 U ′−T

)
=

 A′
1 0

A′
2 0

B′′

C ′
1 C ′

3

C ′
2 In−k

D′′

 .

34

The symplectic condition for the matrix above implies
that C ′T

3 A′
1 = A′

2, which in turn implies that A′
1 has rank

k because rank

(
A′

1

A′
2

)
= k. It follows that the matrix(

A′
1 0

A′
2 + C ′

2 In−k

)
is full rank, and therefore the matrix

(
I Diag(0, In−k)
0 I

)(
P−1 0
0 P−1

)
· χ ·

(
U ′ 0
0 U ′−T

)
has an invertible top-left quadrant. Since multiplying
this matrix from the left with Diag(P, P) and from the
right with Diag(U ′−1, U ′T) does not change that, we con-
clude that (

I K
0 I

)
· χ

with K = P ·Diag(0, In−k)·P−1 has an invertible top-left
quadrant. K is symmetric and has columns with at most
a single nonzero entry, this concludes the proof.

Note that the symmetric matrix K found in the proof
above is always diagonal and therefore the symplectic
matrix χ′ in the lemma corresponds to a circuit of S
gates. However, for any involution J ∈ Sn obeyingKJ =
JK, the matrix K ′ = KJ is a valid solution too. With
this choice for the off-diagonal block, χ′ is the symplectic
representation of a depth-1 circuit containing CZ gates.

Lemma XII.3. Let χ =

(
A B
C D

)
∈ Sp2n(2) with in-

vertible top-left quadrant A ∈ GLn(2). Then there exist
symplectic matrices

• α =

(
I 0
E I

)
with E ∈Mn(2) and E

T = E,

• β =

(
F 0
0 F−T

)
with F ∈ GLn(2), and

• γ =

(
I G
0 I

)
with G ∈Mn(2) and G

T = G,

such that χ = α · β · γ.

Proof. Define matrices α, β and γ as in the lemma above.
We compute their product:

α · β · γ =

(
I 0
E I

)
·
(
F 0
0 F−T

)
·
(
I G
0 I

)
=

(
F FG
EF EFG+ F−T

)
.

By choosing E = CA−1, F = A, and G = A−1B, the
product above yields

α · β · γ =

(
A B
C CA−1B +A−T

)

To prove the lemma, we must show that CA−1B +
A−T = D, and that our choices of E, F , and G result
in valid symplectic matrices α, β, and γ. Recall that the
matrix χ is symplectic, i.e., it satisfies the symplectic con-
dition χTΩχ = Ω. This yields the following conditions
on the submatrices A, B, C, and D:

ATD + CTB = I , (32)

ATC + CTA = 0 , (33)

BTD +DTB = 0 . (34)

Since A is invertible, condition (32) can be restated as

D = A−T +A−TCTB . (35)

Similarly, condition (33) can be reformulated as

CA−1 = A−TCT . (36)

Combining these two equations, we find that D =
CA−1B +A−T , and hence αβγ = χ.
The symplectic condition for α requires E = ET . For

our choice E = CA−1, this follows from Eq. (36). The
symplectic condition for β requires F ∈ GLn(2), which is
guaranteed for our choice F = A. Finally, the symplectic
condition for γ requires G = GT , which for our choice of
G becomes A−1B + BTA−T = 0. Since A is invertible,
this condition is equivalent to ABT +BAT = 0. We find
the following equalities:

ABT +BAT

= ABT +BAT +ABT
(
A−TCT + CA−1

)
BAT

= ABT
(
I +A−TCTBAT

)
+
(
I +ABTCA−1

)
BAT

= ABTDAT +ADTBAT

= A
(
BTD +DTB

)
AT

= 0 ,

where the first equality follows from Eq. 36, the third
equality follows from Eq. 35, and the last equality follows
form Eq. 34.

Having established Lemma XII.2 and Lemma XII.3,
we now proceed to prove Theorem XII.1.

Proof. (Proof of Theorem XII.1) For an arbitrary Clif-
ford operator C with symplectic representation as χ, it
follows from Lemma XII.2 and Lemma XII.3 that we can
decompose χ as

χ =

(
I K
0 I

)
·
(
I 0
E I

)
·
(
F 0
0 F−T

)
·
(
I G
0 I

)
,

with K = KT , each column of K having a weight of at
most one, E = ET , F ∈ GLn(2) and G = GT .
These matrices are the symplectic representations of a

depth-1 Z-diagonal operator, an X-diagonal operator, a
CNOT circuit, and a Z-diagonal operator, respectively.

35

Recall that the symplectic representation of Clifford
operators, χ : Cn → Sp2n(2), was defined to right-act
on row-vectors, and therefore the order of multiplica-
tion must be inverted, i.e., for C1, C2 ∈ Cn we have
χ(C1C2) = χ(C2)χ(C1). We have thus obtained the de-
sired decomposition of the Clifford operator C.

Theorem XII.1 can be used in conjunction with the
results for the depth of various types of logical opera-
tors found in Sections IX, X and XI to determine an
upper bound on the depth required for an arbitrary log-
ical Clifford operator. Note that DZ(1) can always be
chosen to be an in-block depth-1 diagonal circuit. Fur-
thermore, it can be chosen to contain no more than r S
gates per SHY PS(r) code block, which allows us to use
Corollary XI.12 along with two in-block permutations to
implement it a depth no larger than 11r+ 13. Also note
that since the depth of multi-block CNOT gates was de-
termined up to a logical permutation, we should add the
cost of a b-block permutation to it. This, however, does
not contribute to the leading order of the depth of general
CNOT circuits because multi-block permutations have
an implementation of depth O(r2) while b block CNOT
circuits require O(br2).

We find the following total depth for a Clifford synthe-
sized with this decomposition, using the constructions of
logical generators presented in previous sections:

DZ : br2 + (b+ 4)r + 4b− 2

+CX : (2b+ 35)r2 + (2b+ 2)r + 8b+ 2

+DX : br2 + (b+ 4)r + 4b− 2

+DZ(1) : 11r + 13
Total Depth: (4b+ 35)r2 + (4b+ 21)r + 16b+ 11

Note that the above costing of diagonal gates assumes
that r ≥ 4. As shown in Theorem X.7, in-block diagonal
gates may incur an additional depth of up to 3r when
r = 3, and incorporating this in the above calculation
produces an overall depth upper bound of 64b + 407 in
this case.

We end this section with a short remark on the space
overhead required to perform an arbitrary Clifford oper-
ator in SHYPS codes. As detailed in sections IX, X and
XI, cross-block logical operations in the SHYPS code do
not require any space overhead. On the other hand, in-
block operations require at most a single auxiliary code
block. Hence, performing an arbitrary logical Clifford
operator on b code blocks of the SHYPS code (each con-
taining r2 logical qubits) requires at most b auxiliary code
blocks, resulting in a space overhead of br2.

The following result summarises the discussion above,
and provides a comprehensive costing of Clifford operator
implementations in the SHYPS codes.

Theorem XII.4. Let r ≥ 4. Any Clifford operator on
b blocks of SHY PS(r) is implemented fault-tolerantly in

depth at most

(4b+ 35)r2 + (4b+ 21)r + 16b+ 11.

Moreover this implementation incurs a space overhead
of at most b auxiliary code blocks, totalling at most bn
physical qubits. When r = 3, the depth is at most 64b+
407.

XIII. FAULT-TOLERANT DEMONSTRATION

In this section, we discuss our simulations of quantum
memories and Clifford circuits using SHYPS codes. We
begin in Section XIIIA with a detailed description of
the setup used for memory and logic simulations. Next,
in Section XIII B we discuss fault-tolerant syndrome ex-
traction (SE), as well as SE scheduling options for the
SHYPS codes. In Section XIIID, we give details of the
decoder used in the simulations.

A. Numerical simulations

We use two types of numerical simulations in this pa-
per:

• Memory simulation to establish performance of
a single code block of the [49, 9, 4] and [225, 16, 8]
SHYPS codes as compared to surface codes of anal-
ogous scale.

• Logic simulation of a random Clifford operation
decomposed into efficient logical generators applied
across two blocks of the [49, 9, 4] SHYPS code.

In what follows, we describe the details of each of these
simulations. Although we describe concepts in the con-
text of SHYPS codes, this discussion would also be ap-
plicable to simulations of other CSS codes.

1. Memory simulations

Quantum memory simulations are the standard ap-
proach to study the circuit-level performance of sur-
face codes, and have recently been extended to analyze
QLDPC codes under circuit-level noise [17–21]. Circuits
that implement quantum memory experiments follow a
specific set of steps:

1. Transversal Initialization: Initialize the data
qubits in the Z (X) basis and perform a single SE
round.

2. Syndrome Extraction: Perform a predefined
number of SE rounds. In most cases, d SE rounds
are used for a code with distance d.

3. Transversal measurement of data qubits:
Measure the data qubits in the Z (X) basis.

36

We use the open-source Clifford simulation package
Stim [22] to build descriptions of these circuits, each an-
notated with detectors and logical observables. A detec-
tor is the parity of measurement outcome bits in a quan-
tum error correction circuit that is deterministic in the
absence of errors, while a logical observable is the linear
combination of measurement bits whose outcome corre-
sponds to the measurement of a logical Pauli operator
[23]. To describe detectors we label the bits produced
during SE with the stabilizer index i, SE round index t,
and basis B ∈ {X,Z}. Throughout this section, unless
explicitly stated, we assume use of the Z basis for initial-
ization and transversal measurement. A similar approach
is valid for X basis simulations.

The circuits we use for memory simulation begin with
transversal initialization: initializing all data qubits to
|0⟩ and performing a single SE round. Note that this
does not produce the actual logical all-zero state |0̄⟩, but
rather an equivalent version where not all stabilizers have
eigenvalue +1. Specifically, all Z stabilizers will be in
the +1-eigenspace, but X stabilizers will be projected to
take on random values. For this reason, at the end of
this first SE round we only define detectors based on the
Z stabilizer measurement results:

Dt=0
i (Z) = st=0

i (Z) .

Next, SE rounds are repeated a predefined number of
times. Since the first round of SE forces the X stabiliz-
ers to have either a +1 or −1 eigenvalue, their expected
value during these subsequent SE round is no longer ran-
dom. We define detectors following these rounds of SE
by comparing stabilizer measurement results in between
SE rounds:

Dt
i(Z) = sti(Z)⊕ st−1

i (Z), Dt
i(X) = sti(X)⊕ st−1

i (X),

where ⊕ represents addition modulo 2.

The last step is transversal measurement in the Z ba-
sis. In this case, we define detectors by comparing the
stabilizer values from the final noisy SE round to the fi-
nal stabilizer values computed from products of the data
qubit measurements. We do not define detectors for X
stabilizers as they are unknown following measurement
in the Z basis. Logical observables are defined to be the
logical Z operators of the SHYPS code. We can write
them as

L(Z) =
⊕

mi∈LZ

mi , (37)

where mi takes values 0 or 1 and represents data qubit
measurements produced during transversal readout in
the Z basis, LZ represents the chosen basis for the logical
Z operators of the SHYPS code and i ∈ {0, . . . , n− 1}.
Once descriptions of memory circuits are constructed,

complete with detectors and observables, the decoding
problem for memory simulations can be cast within the
framework of Detector Error Models (DEM) [23, 24].

DEMs convey information about SE circuits in the form
of a detector check matrix HDCM, a logical observable
matrix L, and a vector of priors p. The rows and
columns of HDCM represent detectors and independent
error mechanisms in the circuit, respectively. The entry
in position (i, j) of HDCM will be 1 iff the i-th detec-
tor is flipped (recall that detectors are deterministically
0 in the absence of noise) whenever the j-th error occurs
and zero otherwise. Similarly, the rows and columns of
L represent the k logical observables we are attempting
to preserve with our protocol, and the independent error
mechanisms in the circuit, respectively. The entry in po-
sition (i, j) of L will be 1 iff the i-th logical observable
is flipped by error mechanism j and zero otherwise. The
vector of priors p contains the prior error probability for
each of the individual error mechanisms in the circuit.
We use Stim to compute HDCM, L, and p for memory

circuits under standard circuit-level depolarizing noise
[25]. This noise model assumes that each element in a
quantum circuit is independently either ideal or faulty
with probability 1− p and p, respectively, where p is the
model parameter called the physical error rate. In the
context of our circuits for memory simulations, we have
the following faulty operations:

• State preparation: With probability p, the or-
thogonal state (e.g., |0⟩ instead of |1⟩) is prepared.

• Measurement: With probability p, the classical
measurement result is flipped (from 0 to 1 or vice
versa).

• Single qubit gates: With probability p, apply
X, Y , or Z (the specific Pauli operator is picked
uniformly at random). An idle qubit in any time
step experiences a noisy I gate.

• Two qubit gates: With probability p, ap-
ply one of the 15 nontrivial 2-qubit Pauli op-
erations on the control and the target qubits
{IX, IY, IZ,XI, . . . , ZZ} (the specific Pauli oper-
ator is picked uniformly at random).

Aside from using Stim to compute the triplet HDCM,
L, and p, we also use it to simulate our circuits efficiently
and produce detector and observable samples over differ-
ent physical noise realizations. This allows us to formu-
late the decoding problem for quantum memories: pro-
vided with HDCM, p, and the detector samples, the de-
coder provides an estimate of the real circuit error, which
we denote by c. We assess the accuracy of the error
correction protocol by comparing the observable samples
provided by Stim to the logical effect of c, computed as
L · c. Repeating this procedure over different physical
noise realizations allows us to estimate the logical error
rate of quantum memories.
We refer those looking for extensive discussions on de-

tector error models and the circuit-level decoding prob-
lem to [23, 24] and [21], respectively.

37

Detector considerations

In recent works, memory simulations have used either
strictly Z-type or strictlyX-type detectors [17–21]. More
explicitly, D(X) (D(Z)) have not been used to decode
Z (X) basis experiments [26]. This is primarily due to
a substantial increase in the size of the detector check
matrix H when both detector types are used, and the
fact that most decoders cannot exploit the traces left
by Y -errors on both the X and Z stabilizers. To keep
comparisons fair, we simulate our memory circuits using
only Z-type detectors.

2. Simulations of logical operation

As with memory, we construct descriptions of logical
circuits in Stim. The following steps outline a logical
circuit:

1. Transversal Initialization: Initialize the data
qubits in the Z (X) basis and perform a round of
syndrome extraction.

2. Logical Operations Interleaved with Syn-
drome Extraction. The Clifford unitary of in-
terest is synthesized as a depth-D sequence of Clif-
ford generators. Each of these Clifford generators
is applied to the circuit followed by a round of sta-
bilizer extraction. For the logic simulation shown
in the main text, the circuit simulated comprises of
2× 63 = 126 stabilizer generators interleaved with
syndrome extraction.

3. Transversal measurement of data qubits:
Measure the data qubits in the Z (X) basis.

In order to annotate our Stim circuits with determin-
istic observables using equation (37), we also apply the
inverse of the synthesized operator. This is why the total
depth of the circuit we used for our Clifford simulation
has twice the depth as the sampled Clifford circuit itself.
Noise is added to our descriptions of logical circuits using
the standard circuit-level noise model.

It is worth mentioning that it is also possible to per-
form analysis based on logical measurement results that
are random. This was recently done in [27], where the au-
thors override the Stim requirement for deterministic ob-
servables by defining gauge detectors and then interpret-
ing the random measurement results according to their
proposed methodology. Running simulations with non-
deterministic observables is important for a full charac-
terization. In fact, it might even be more practical in
some ways, as it would eliminate the need for inverting
the logical action of the Clifford operators we simulate.
As is done in most quantum error correction analyses and
simulations, we have focused on the case of determinis-
tic observables for simplicity. We leave the extension to
simulations with non-deterministic observables for future
work.

Detector discovery for logical circuits

As with memories, the first step in a logical circuit
is transversal initialization, so we define detectors in
this first stage to be the Z stabilizer measurement out-
comes:

Dt=0
i (Z) = st=0

i (Z) .

The next stage in the circuit involves performing multi-
ple rounds of a logical operation followed by SE. Defining
detectors in this stage is more nuanced than for quan-
tum memories [28] because logical operations preserve
the codespace but act non-trivially on the stabilizer gen-
erators we infer during SE [29]. For instance, the logi-
cal fold-transversal Hadamard gate H⊗nτ gate (see Sec-
tion XI) maps X (Z) stabilizers in the (i − 1)-th round
to Z (X) stabilizers in the i-th round. To define valid
detectors, we must track the map that each particular
logical operator applies on the stabilizer generators. We
do so based on a general linear algebra approach that
computes the logical action of the operation on the stabi-
lizers and returns the relationship between the stabilizers
before and after the logical operation. Alternatively, it
is also possible to define detectors in the context of non-
trivial logic by using specific update rules for each type of
logical operator that may appear in the circuit. In [27],
the authors explain how to define detectors following the
application of transversal logical H, CNOT, and S gates.

B. Syndrome extraction circuits

In our simulations we do not measure the stabilizers
of an SHYPS code directly to perform SE. Instead, we
measure the gauge generators of the code and then ag-
gregate those measurement outcomes accordingly to in-
fer the stabilizer measurement results. We use the SE
circuits proposed in [30] to implement gauge generator
readout for SHYPS codes in our simulations. This type
of SE circuit belongs to the family of bare-auxiliary gad-
gets [31], where a single auxiliary qubit is used to readout
a stabilizer or gauge generator. In what follows we ex-
plain the details of our SE strategy.

1. Circuit fault analysis

The bare-auxiliary method for extracting syndromes
provides little protection against error-spread from aux-
iliary qubits to data qubits. However, this is not an issue
for SHYPS codes. Consider the top circuit in Figure 4,
which measures the Z-gauge generator gZ,l = ZiZjZk,
where the subscript Z denotes the fact that the gauge
generator is a composed purely of single-qubit Z opera-
tors and the subscript l is used to represent an arbitrary
index. In this figure, numbered boxes are included not

38

to represent operations, but to differentiate moments in
the circuit.

|qi⟩
|qj⟩
|qk⟩
|0⟩ 1 2 3 4

Z

|qi⟩
|qj⟩
|qk⟩
|+⟩ 1 2 3 4

X

Figure 4. Circuits to measure the eigenvalue of Z-type (top)
and X-type (bottom) gauge generators in an SHYPS code.
The numbered boxes represent circuit moments.

If a single Z error occurs on the auxiliary qubit, de-
pending on the circuit moment at which it happens (po-
sitions 1 − 4), the error will propagate to one of the
following data qubit errors: {ZiZjZk, ZjZk, Zk}. Error
ZiZjZk is the gauge generator gZ,l itself, so it can be
ignored. By multiplying the second error ZjZk by gZ,l,
we end up with Zi, which is a weight-1 error. The third
error is already a weight-1 error. Thus, a single Z error
on the auxiliary qubit can lead to at most one Z error
on the data qubits, modulo gauge generators. An X er-
ror on the auxiliary qubit cannot spread to data qubits,
so its only effect is flipping the measurement outcome,
which will produce a measurement error.

The circuit is fault-tolerant against Z-errors, as the
single Z-faults on the auxiliary qubits are equivalent to
at worst single Z-errors on the data qubits. It is fault-
tolerant against X errors because they cannot spread to
data qubits. Since a single-qubit error on the auxiliary
qubits leads to a single-qubit error in the code block, the
circuit is fault-tolerant and hence it is protected from
high-weight hook errors [32]. A similar analysis can be
applied to show that the second circuit shown in Figure 4,
which measures the X-gauge generator gX,l = XiXjXk,
is also fault-tolerant.

Note that X errors on the auxiliary qubits will alter
the measurement outcome, indicating the presence of X-
errors on the data when there are none. This problem is
not unique to this method of syndrome extraction, and
is what leads to the frequently seen notion of repeated
stabilizer measurements with a number of times matching
the code distance.

2. Scheduling SE for SHYPS codes

There are two approaches to scheduling gauge gen-
erator measurement circuits for SHYPS codes in the
minimum-possible depth. The first relies on exploiting
the particular structure of SHYPS codes while the sec-
ond makes use of the coloration circuit approach from
[33]. Both produce gauge generator measurement circuits
of the same depth. For the simulations in this paper,
we use the coloration circuit to schedule gauge generator
readout.

Structure-based scheduling

Recall the structure of the X-gauge generators for the
SHYPS code from Section VIII E:

GX = H ⊗ Inr
,

where H is the over-complete nr × nr parity check ma-
trix of the classical (nr, r, dr)-simplex code. Moreover,
H is the cyclic parity check matrix corresponding to
a choice of weight-3 parity-check polynomial h(x) =
1 + xd1 + xd1+d2 . So there exist n2r gauge generators
ri ⊗ ej , corresponding to a choice of rows ri and ej from
matrices H and In, respectively. Furthermore, the cyclic
structure of H clearly implies that g = Xri⊗ej is sup-
ported on qubits qi,j , qi+d1,j , and qi+d1+d2,j , where we
denote qubits in a codeblock by q and qubit labels are
combined modulo nr.
Hence, we may schedule measurement of all n2r X-

gauge generators in 5 time steps:

1. Preparation of the auxiliary states ai,j = |+⟩i,j
2. Apply

∏
CNOT (qi,j , ai,j)

3. Apply
∏
CNOT (qi+d1,j , ai,j)

4. Apply
∏
CNOT (qi+d1+d2,j , ai,j)

5. Measure auxiliary qubits ai,j .

This requires a total 3n2r physical CNOT gates. Note
that other configurations of the CNOT circuit are pos-
sible, for example Steps 2, 3, and 4 could be taken in
any order. A similar schedule applies for extracting the
Z-gauge syndromes. A naive composition of the X and
Z-gauge measurement circuits would yield a depth-10 cir-
cuit. However, a depth-8 circuit is possible if: X gauge
generator measurement qubits are initialized during the
last moment of Z gauge generator extraction, and Z
gauge generator measurement qubits are measured in the
first moment of X gauge generator extraction.

Coloration circuit approach

We can alternatively schedule gauge generator readout
circuits for any SHYPS code using the edge-coloring al-

39

gorithm depicted in Algorithm 1, which is a slightly mod-
ified version of the algorithm proposed in [33]. Specifi-
cally, this algorithm works with a modified pair of Tanner
graphs T ′

X and T ′
Z , where T

′
X and T ′

Z are Tanner graphs
whose stabilizer check nodes have been substituted by
gauge generator nodes while all other aspects of the al-
gorithm remain exactly the same.

Algorithm 1: Edge Coloring Circuit

Data: The Tanner graphs T ′X and T ′Z , as well as their
minimum edge colorings CX and CZ

Result: Gauge measurement circuit for X and Z
gauge generators of an SHYPS code

Z Gauge Generators

Initialize all auxiliary qubits that will measure Z
gauge generators in the |0⟩ state;

for c ∈ CZ do
In the same circuit moment, apply CNOTi→j

gates from the i-th data qubit (control) to the
j-th auxiliary qubit (target) supported on an
edge {i, j} with color c;

X Gauge Generators

Initialize all auxiliary qubits that will measure X
gauge generators in the |+⟩ state;

for c ∈ CX do
In the same circuit moment, apply CNOTi←j

gates from the j-th auxiliary qubit (control) to
the i-th data qubit (target) supported on an edge
{i, j} with color c;

Depth optimality of SE circuits

A critical aspect to consider in the context of SE
scheduling is evaluating how good the obtained readout
circuits are, since there is no guarantee that methods such
as the coloration circuit achieve the minimum possible
depth [33]. Note how, in principle, it is possible to sched-
ule CNOTs for X- and Z- generators in the same cir-
cuit moment such that these interleaved circuits achieve
lower depth than the coloration approach, which sched-
ules CNOTs for X- and Z- stabilizers separately. For
instance, the SE circuits produced by the edge-coloring
approach for surface codes have depth 10, while the in-
terleaved scheduling approach yields circuits of depth 6.

In the context of SHYPS codes, both the structure-
based and edge-coloring approaches produce the min-
imum depth circuits that implement gauge generator
readout. This is because SHYPS codes do not allow for
interleaving CNOTs involved in X and Z gauge gener-
ators, as there are no idling qubits at any given circuit
moment of the gauge generator readout circuit. In other
words, since every data qubit is involved in each circuit
moment, there is no way of pulling CNOT gates through
the circuit so that they occur earlier and the depth is
reduced.

3. Stabilizer aggregation for SHYPS codes

Once the gauge generators of an SHYPS code have
been measured, we obtain the stabilizer measurement
outcomes via stabilizer aggregation. We can determine
how to perform the aggregation by exploiting the struc-
ture of SHYPS codes. Recall from Section VIII E that
the X-gauge generators and X-stabilizers are given by

GX = H ⊗ Inr
, SX = H ⊗G,

respectively. We can write SX = (Inr ⊗ G)GX . This
means that the nonzero entries in the rows of the classical
generator matrix G indicate which gauge generator mea-
surement results must be combined to compute each sta-
bilizer measurement outcome: The indices of the nonzero
entries in row i of G are the gauge generators whose com-
bination yields stabilizer generator i of the SHYPS code.
The same argument can be followed to compute the Z-
stabilizer aggregation.

C. Monte Carlo simulation data

We produce our simulation results by Monte Carlo
sampling memory and logic circuits with Stim and de-
coding over different physical error rates. We schedule
our Monte Carlo simulations with enough runs to sample
at least 100 logical errors for every physical error rate. In
this section, we explain how we compute the uncertain-
ties of our simulation results and how we normalize the
logical error rate for Figures 1 and 2 in the main text.

1. Uncertainties of simulation results

We use the 95% confidence interval, shown as shaded
regions in Figs. 1 and 2 of the main text as well as in
Figs. 5 and 6 in Section XIII E of the supplementary ma-
terial, to portray the uncertainties associated to our sim-
ulation results. We compute the 95% confidence interval
as follows.

A Monte Carlo simulation that executes ns runs of
independent Bernoulli trials with an observed failure rate
of p̃ has a variance

σ2 =
p̃(1− p̃)
ns

. (38)

Its standard deviation can thus be directly calculated as

σ =

√
p̃(1− p̃)
ns

. (39)

Thus, we can establish the uncertainty bounds of the
true failure probability p using the observed failure rate

40

p̃ within a specified confidence interval:

p = p̃± z · σ, (40)

where, for example, z = 1.96 corresponds to a 95% con-
fidence level.

Furthermore, when the logical error rates are normal-
ized and scaled based on the number of logical observ-
ables v, the number of SE rounds s, and the number of
copies of the code m – details of which will be provided
in the next subsection – we apply the propagation of un-
certainty to update the uncertainty bounds accordingly.

2. Normalizing and scaling logical error rates

At the end of our Monte Carlo simulations, we obtain
the number of logical error events for a given number of
Monte Carlo simulation runs. Let pv,s be the observed
logical error rate at the end of a simulation that has v
logical observables and s syndrome extraction rounds.
Note that pv,s is also widely referred to as the shot error
rate. In Fig. 1 and 2 of the main text we report a different
quantity, the logical error rate per syndrome extraction
round, which we denote as pv,1. Next, we describe how
pv,1 is calculated from pv,s, v, and s.
We begin by determining the observed logical error rate

per logical observable, represented by p1,s. Since any er-
ror or flip affecting the logical observables is treated as
a single logical error event, we can directly define the
relationship between pv,s, p1,s, and v as follows:

pv,s = 1− (1− p1,s)v. (41)

By rearranging (41), we derive

p1,s = 1− (1− pv,s)1/v. (42)

Next, we calculate the logical error rate per logical ob-
servable per syndrome extraction round, denoted by p1,1.
Consider that each of the logical observables undergo s
successive Bernoulli trials, where an outcome of 0 repre-
sents success and 1 signifies failure, with each trial having
a failure probability of p1,1. Consequently, after perform-
ing s consecutive trials, the final result is effectively the
XOR of the s trials, leading to an observed failure proba-
bility of p1,s. This is equivalent to stating that each log-
ical observable passes through a binary symmetric chan-
nel (BSC) repeated s times in sequence. Therefore, we
can express the relationship between p1,s, p1,1, and s as
follows:

p1,s =
1− (1− 2p1,1)

s

2
(43)

and by rearranging (43), we obtain

p1,1 =
1− (1− 2p1,s)

1/s

2
(44)

Finally, we calculate the logical error rate per syndrome
extraction round, denoted by pv,1. Similar to (41), we can
explicitly express the relationship between pv,1, p1,1, and
v as follows:

pv,1 = 1− (1− p1,1)v . (45)

By substituting (42) into (44), and substituting the re-
sult into (45), we obtain a final expression for the logical
error rate per syndrome extraction round, pv,1, based on
the observed logical error rate pv,s, the number of logical
observables v, and the number of syndrome extraction
rounds s as follows:

pv,1 = 1−
(
1 +

[
2(1− pv,s)1/v − 1

]1/s
2

)v

. (46)

The above calculation is equivalent to the method im-
plemented in sinter, a package that integrates directly
with Stim, to calculate the so-called piece error rate from
the shot error rate.
To produce the scaled surface code data in Fig. 1 and

the two-block memory data in Fig. 2 of the main text we
calculate the logical error rate per syndrome extraction
round pv,1 for multiple patches of the same code. We
denote this quantity by pmv,1, where m is the number of
code patches. We compute the scaled logical error rate
per syndrome extraction round based on the following
equation:

pmv,1 = 1− (1− pv,1)m. (47)

D. Decoding details

The results for SHYPS codes reported in Fig. 1 and 2 of
the main text were generated using a proprietary imple-
mentation of a sliding window decoder with belief propa-
gation and order 0 ordered statistics decoding (BPOSD0)
as the constituent decoder, where we employ a modified
version of the min-sum (MS) update rule to improve the
decoding convergence. Surface code data was generated
using the pymatching package [23]. Here we give details
about our decoding approach. We provide the specific
parameter configurations for MS BPOSD0 (scaling fac-
tor and iterations) used for each simulation in tables V
and VI.

1. BPOSD

BPOSD is a two-stage decoder that combines BP with
OSD. Belief propagation (BP) achieves excellent decod-
ing performance for classical LDPC codes [34, 35]. How-
ever, standalone BP decoding may not perform as well
for QLDPC codes due to a variety of reasons, including
degenerate error patterns, short-cycles in the decoding
graph, and split beliefs [36–38]. The quantum-specific

41

issues standalone BP suffers can be alleviated by provid-
ing the output of a BP decoder to an ordered statistics
decoder (OSD). OS decoders rely on sorting the reliabil-
ity of BP outputs and systematizing the decoding graph
to improve performance. The resulting combination, re-
ferred to as BPOSD, is a high-performing general decoder
that has become the state of the art for decoding QLDPC
codes [36, 39, 40]. Unfortunately, the improvements in
decoding performance provided by BPOSD come with
a price. OS decoding involves an unavoidable matrix
inversion step, which drastically increases the complex-
ity when compared to standalone BP decoding. Sig-
nificant effort is being made to curtail the complexity
of BPOSD without sacrificing error correction perfor-
mance [18, 19, 21, 41]. For our simulations we employ
so-called fast OSD0, which provides most of the perfor-
mance improvement while avoiding the complexity in-
crease of higher order OSD [39].

BPOSD parameters

BPOSD offers a variety of tunable parameters that can
be adjusted to improve decoding performance:

• Maximum number of BP iterations, BPmax
it :

BP is an iterative message-passing algorithm that
will not generally terminate on its own [34]. As
such, the maximum number of BP iterations repre-
sents the number of times that messages are allowed
to be exchanged over the decoding graph, and, gen-
erally, more iterations result in better performance.
If the BP decoder fails to find a converging solu-
tion after the maximum number of BP iterations
is reached, then its outputs will be provided to the
OS decoder for a subsequent attempt at decoding.

• OSD order: The order of the OS decoder (also
known as search depth), w ∈ Z+

0 , determines the
number of candidates to evaluate as possible solu-
tions to the decoding problem. A larger w incurs
higher complexity while providing better error cor-
rection performance.

• MS scaling factor: For conciseness, we assume
reader familiarity with BP decoders and refer read-
ers to [36] for a full discourse on MS BP. For an MS
BP decoder to achieve performance comparable to
that of the Sum-Product (SP) BP algorithm, the
scaling factor included in the check node message
update rules must be adjusted based on the current
BP iteration index. In [36], the MS scaling factor
is defined as α = 1 − 2−i, where i ∈ Z+ is the BP
iteration index. However, we found that due to the
large size of the DCMs in our simulations, as well
as the large number of BP iterations required in
both memory and Clifford circuit simulations, the
aforementioned MS scaling factor converged to 1

too quickly. This resulted in performance compara-
ble to unscaled MS BP, which fails to approximate
SP BP appropriately. Hence, we slowed down the
convergence by introducing an additional damping
factor β, which we refer to as the dynamic scaling
factor, into the MS scaling factor equation [42]:

α = 1− 2−⌈βi⌉. (48)

2. Sliding window decoder

The dimensions of a detector check matrix (DCM),
which we denote by HDCM, grow with the number of SE
rounds. This implies that decoding successively deeper
circuits with many SE rounds becomes increasingly dif-
ficult. For reference, the DCM associated to our log-
ical Clifford simulation has 10, 668 rows and 387, 590
columns. However, empirical evidence shows that DCMs
generally possess the characteristics of classical spatially-
coupled LDPC codes [20, 43, 44]. In the context of
classical coding theory, these codes can be decoded ef-
ficiently using a sliding window decoder (SWD) [45]. In-
stead of decoding across the entire DCM, which may be
prohibitively large or add unnecessary decoding latency,
SWD performs sequential decoding on smaller window
decoding regions or subsets of the DCM. Decoding within
the decoding regions is conducted with a standard decod-
ing algorithm, such as standalone BP or BPOSD. Once
the window is decoded, the decoder shifts forward by a
specified commit step to the next decoding region of the
PCM. To ensure continuity, consecutive windows typi-
cally overlap. The overlapping decoding region allows
the decoder to account for correlations between adjacent
subsets of the DCM. By focusing on smaller, localized
regions, SWD reduces the computational load compared
to decoding across the entire DCM at once. Memory us-
age is also significantly reduced since only the subsets
of the DCM within the window decoding region need to
be stored and processed. Despite its reduced complex-
ity, SWD often achieves near-optimal performance for
spatially-coupled LDPC codes as long as the information
obtained from localized decoding propagates well to ad-
jacent decoding regions.
The full DCM for multiple SE rounds has the following

structure:

HDCM =

H1,1

H2,1 H2,2

H3,2 H3,3

H4,3 H4,4

· · · · · ·
Ht,t−1 Ht,t

 , (49)

where t is the total number of sets of the detectors used in
the simulation. In our simulation setup, t = d+2, where
d is the number of SE rounds, and the additive factor
of 2 comes from the detectors defined after transversal
initialization and transversal measurement. This formula

42

holds for both memory and Clifford circuit simulations.
Given the measured detector values s, the decoding

problem becomes finding the most likely error pattern ê
that satisfies

sT = HDCM · êT , (50)

where

ê = [ê1 ê2 ê3 · · · êt] , (51)

s = [s1 s2 s3 · · · st] . (52)

Based on the above expansion, we can write the decoding
problem as the following set of equations:

sT1 = H1,1 · êT1
sT2 = H2,1 · êT1 +H2,2 · êT2

... (53)

sTt−1 = Ht−1,t−2 · êTt−2 +Ht−1,t−1 · êTt−1

sTt = Ht,t−1 · êTt−1 +Ht,t · êTt
Since both formulations of the problem are equivalent,
we can re-express the original decoding problem into a
set of smaller decoding problems.

An SWD(w, c) has two defining parameters: the win-
dow size w and the commit size c. The window size
w determines the number of sets of detectors that are
used as inputs for each decoding round, while the com-
mit size c determines the number of detectors that we fix
for committing the error correction. To envisage how an
SWD(w, c) works, take SWD(3, 1) as an example and let
i denote the index of the decoding round.
In the first decoding round (i = 1) of an SWD with

w = 3, we will take the detector values [s1 s2 s3] and
apply our chosen decoding algorithm to produce esti-
mated errors [ê1 ê2 ê3] using the following segment of
the DCM:

H
(i=1)
DCM =

 H1,1

H2,1 H2,2

H3,2 H3,3

 . (54)

For c = 1, we commit the correction of the detector val-
ues s1, which means that we commit correction on the
estimated error ê1. After we commit to the estimated
error, we move on to the next decoding round (i = 2),
where we now take the detector values [s2 s3 s4] at the
start of the decoding round. However, s2 involves the
estimated error ê1 that we committed in the previous
decoding round (i = 1), and we do not want to double-
correct this error. To circumvent this, we update s2 in
this decoding round (i = 2) as follows:

sT2
′
= sT2 +H2,1 · êT1 . (55)

Now we perform decoding using the detector values
[s′2 s3 s4] and apply our chosen decoding algorithm to

produce estimated errors [ê2 ê3 ê4] on the following seg-
ment of the DCM:

H
(i=2)
DCM =

 H2,2

H3,2 H3,3

H4,3 H4,4

 . (56)

We use the output of the second decoding round to com-
mit ê2: the correction of the detector values s2. Remem-
ber that we have committed to the correction of ê1 in
the first decoding round, so we do not need to commit
on it again. This overlapping decoding procedure is per-
formed sequentially until we reach the window decoding
region that involves the detector values [st−2 st−1 st].
Recall that we need to update st−2 to s′t−2 accordingly
before starting this final round. In the last decoding
round (i = t − 2), we commit to the estimated errors
in the entirety of [et−2 et−1 et] after applying our cho-
sen decoding algorithm on the following segment of the
DCM:

H
(i=t−2)
DCM =

 Ht−2,t−2

Ht−1,t−2 Ht−1,t−1

Ht,t−1 Ht,t

 . (57)

Finally, we obtain the estimated error ê =
[ê1 ê2 ê3 · · · êt] after performing (t − 2) sequen-
tial decoding rounds using an SWD(3, 1).

E. Additional simulation results

10 210 310 410 5

p (physical error rate)

10 1

10 2

10 3

10 4

10 5

10 6

100

p L
 (l

og
ica

l e
rro

r r
at

e
pe

r r
ou

nd
)

Memory Simulations for [49, 9, 4] SHYPS Code - BPOSD0
(2, 1) Sliding Window - BPmax

it = 500
(3, 1) Sliding Window - BPmax

it = 1000
(4, 1) Sliding Window - BPmax

it = 2000
Unencoded

Figure 5. Logical error rate performance of [49, 9, 4] SHYPS
code using sliding window decoder.

In this section, we study the effects of varying the SWD
configuration on the performance of our decoding ap-
proach. We find that decreasing the window size does
not noticeably impact the performance of the [49, 9, 4]
SHYPS code, even while also decreasing BPmax

it . A con-
stant logical error rate suppression with decreasing win-
dow size is indicative of single-shot behaviour, which

43

10 210 310 410 5

p (physical error rate)

10 1

10 2

10 3

10 4

10 5

10 6

10 7

p L
 (l

og
ica

l e
rro

r r
at

e
pe

r r
ou

nd
)

Memory Simulations for [225, 16, 8] SHYPS Code - BPOSD0
(2, 1) Sliding Window - BPmax

it = 500
(3, 1) Sliding Window - BPmax

it = 1000
(4, 1) Sliding Window - BPmax

it = 2000
Unencoded

Figure 6. Logical error rate performance of [225, 16, 8] SHYPS
code using sliding window decoder.

means it is sufficient to run only a single round of SE be-
tween each logical operation. For the [225, 16, 8] SHYPS
code, we observe similar single-shot behaviour, with iden-
tical logical error rates for w = 3 and w = 4. The per-
formance drops for w = 2 (BPmax

it = 500), but this gap
can likely be closed with further optimization of the BP
parameters.

[1] N. Rengaswamy, R. Calderbank, H. D. Pfister, and
S. Kadhe, in Proceedings of IEEE International Sympo-
sium on Information Theory (ISIT) (IEEE, 2018) pp.
791–795.

[2] S. Aaronson and D. Gottesman, Phys. Rev. A 70, 052328
(2004).

[3] A. R. Calderbank and P. W. Shor, Phys. Rev. A 54, 1098
(1996).

[4] D. Poulin, Phys. Rev. Lett. 95, 230504 (2005).
[5] F. MacWilliams and N. Sloane, The Theory of Error-

Correcting Codes, 2nd ed. (North-holland Publishing
Company, 1978).

[6] M. Grassl and M. Roetteler, in Proceedings of IEEE In-
ternational Symposium on Information Theory (ISIT)
(IEEE, 2013) pp. 534–538.

[7] The upper bound of 500 clearly encapsulates all codes
that will ever be used in practice. That the result in fact
holds for all r is an open conjecture [8].

[8] S. G. I. F. Blake and R. J. Phelps, Proc. Holloway Conf.
on Finite Fields (1996).

[9] M. Li and T. J. Yoder, in Proceedings of IEEE Inter-
national Conference on Quantum Computing and Engi-
neering (QCE) (IEEE, 2020) pp. 109–119.

[10] A. O. Quintavalle, P. Webster, and M. Vasmer, Quantum
7, 1153 (2023).

[11] N. P. Breuckmann and S. Burton, Quantum 8, 1372
(2024).

[12] H. Sayginel, S. Koutsioumpas, M. Webster, A. Rajput,
and D. E. Browne, Fault-Tolerant Logical Clifford Gates
from Code Automorphisms (2024), arXiv:2409.18175
[quant-ph].

[13] A. Lempel, SIAM Journal on Computing 4, 175 (1975).
[14] M. Aschbacher and L. Scott, Journal of Algebra 92, 44

(1985).
[15] A full discussion of this question is avail-

able on Math Stackexchange: Steve D
(https://math.stackexchange.com/users/265452/steve-
d), Diameter of Sn2 with respect to two
copies of Sn ≀ Sn, URL (version: 2024-06-02):
https://math.stackexchange.com/q/4926419.

[16] C. E. Shannon, Journal of Mathematics and Physics 28,
148 (1949).

[17] S. Bravyi, A. W. Cross, J. M. Gambetta, D. Maslov,
P. Rall, and T. J. Yoder, Nature 627, 778–782 (2024).

[18] A. deMarti iOlius and J. E. Martinez, The closed-
branch decoder for quantum LDPC codes (2024),
arXiv:2402.01532 [quant-ph].

[19] T. Hillmann, L. Berent, A. O. Quintavalle, J. Eisert,
R. Wille, and J. Roffe, Localized statistics decoding:
A parallel decoding algorithm for quantum low-density
parity-check codes (2024), arXiv:2406.18655 [quant-ph].

[20] A. Gong, S. Cammerer, and J. M. Renes, Toward low-
latency iterative decoding of QLDPC codes under circuit-
level noise (2024), arXiv:2403.18901 [quant-ph].

[21] S. Wolanski and B. Barber, Ambiguity clustering: An
accurate and efficient decoder for qLDPC codes (2024),
arXiv:2406.14527 [quant-ph].

[22] C. Gidney, Quantum 5, 497 (2021).
[23] O. Higgott and C. Gidney, Sparse blossom: correcting

a million errors per core second with minimum-weight
matching (2023), arXiv:2303.15933 [quant-ph].

[24] P.-J. H. S. Derks, A. Townsend-Teague, A. G. Burchards,
and J. Eisert, Designing fault-tolerant circuits using de-
tector error models (2024), arXiv:2407.13826 [quant-ph].

[25] A. G. Fowler, A. M. Stephens, and P. Groszkowski, Phys.
Rev. A 80, 052312 (2009).

[26] Note that all stabilizers are still measured, as omitting
the X (Z) stabilizer measurements in a Z (X) memory
experiment eliminates the guarantee that the protocol
would work to preserve an arbitrary quantum state.

[27] H. Zhou, C. Zhao, M. Cain, D. Bluvstein, C. Ducker-
ing, H.-Y. Hu, S.-T. Wang, A. Kubica, and M. D. Lukin,
Algorithmic fault tolerance for fast quantum computing
(2024), arXiv:2406.17653 [quant-ph].

[28] Note that memories are just simulations of trivial logic.
[29] We do not measure the stabilizer generators of the

SHYPS code directly. We measure their gauge genera-
tors and use those outcomes to compute the stabilizer
measurement results.

[30] S. Bravyi, G. Duclos-Cianci, D. Poulin, and M. Suchara,

https://doi.org/10.1109/ISIT.2018.8437652
https://doi.org/10.1109/ISIT.2018.8437652
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1103/PhysRevLett.95.230504
https://doi.org/10.1109/isit.2013.6620283
https://doi.org/10.1109/isit.2013.6620283
https://doi.org/10.22331/q-2023-10-24-1153
https://doi.org/10.22331/q-2023-10-24-1153
https://doi.org/10.22331/q-2024-06-13-1372
https://doi.org/10.22331/q-2024-06-13-1372
https://arxiv.org/abs/2409.18175
https://arxiv.org/abs/2409.18175
https://arxiv.org/abs/2409.18175
https://arxiv.org/abs/2409.18175
https://doi.org/10.1137/0204014
https://doi.org/10.1038/s41586-024-07107-7
https://arxiv.org/abs/2402.01532
https://arxiv.org/abs/2402.01532
https://arxiv.org/abs/2402.01532
https://arxiv.org/abs/2406.18655
https://arxiv.org/abs/2406.18655
https://arxiv.org/abs/2406.18655
https://arxiv.org/abs/2406.18655
https://arxiv.org/abs/2403.18901
https://arxiv.org/abs/2403.18901
https://arxiv.org/abs/2403.18901
https://arxiv.org/abs/2403.18901
https://arxiv.org/abs/2406.14527
https://arxiv.org/abs/2406.14527
https://arxiv.org/abs/2406.14527
https://doi.org/10.22331/q-2021-07-06-497
https://arxiv.org/abs/2303.15933
https://arxiv.org/abs/2303.15933
https://arxiv.org/abs/2303.15933
https://arxiv.org/abs/2303.15933
https://arxiv.org/abs/2407.13826
https://arxiv.org/abs/2407.13826
https://arxiv.org/abs/2407.13826
https://doi.org/10.1103/PhysRevA.80.052312
https://doi.org/10.1103/PhysRevA.80.052312
https://arxiv.org/abs/2406.17653
https://arxiv.org/abs/2406.17653

44

Subsystem surface codes with three-qubit check opera-
tors (2013), arXiv:1207.1443 [quant-ph].

[31] S. Huang and K. R. Brown, Physical Review Letters 127,
10.1103/physrevlett.127.090505 (2021).

[32] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill,
Journal of Mathematical Physics 43, 4452
(2002), https://pubs.aip.org/aip/jmp/article-
pdf/43/9/4452/8171926/4452 1 online.pdf.

[33] M. A. Tremblay, N. Delfosse, and M. E. Beverland, Phys.
Rev. Lett. 129, 050504 (2022).

[34] F. Kschischang, B. Frey, and H.-A. Loeliger, IEEE Trans-
actions on Information Theory 47, 498 (2001).

[35] J. Pearl, Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference (Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1988).

[36] J. Roffe, D. R. White, S. Burton, and E. Campbell, Phys.
Rev. Res. 2, 043423 (2020).

[37] P. Fuentes, J. Etxezarreta Martinez, P. M. Crespo, and
J. Garcia-Frias, IEEE Access 9, 89093 (2021).

[38] N. Raveendran and B. Vasić, Quantum 5, 562 (2021).

[39] P. Panteleev and G. Kalachev, Quantum 5, 585 (2021).
[40] A. deMarti iOlius, P. Fuentes, R. Orús, P. M. Crespo,

and J. Etxezarreta Martinez, Quantum 8, 1498 (2024).
[41] A. deMarti iOlius, I. E. Martinez, J. Roffe, and J. E.

Martinez, An almost-linear time decoding algorithm for
quantum LDPC codes under circuit-level noise (2024),
arXiv:2409.01440 [quant-ph].

[42] A. A. Emran and M. Elsabrouty, in Proceedings of IEEE
25th Annual International Symposium on Personal,
Indoor, and Mobile Radio Communication (PIMRC)
(IEEE, 2014) pp. 892–896.

[43] L. Berent, T. Hillmann, J. Eisert, R. Wille, and J. Roffe,
PRX Quantum 5, 10.1103/prxquantum.5.020349 (2024).

[44] S. Huang and S. Puri, Improved noisy syndrome decod-
ing of quantum LDPC codes with sliding window (2023),
arXiv:2311.03307 [quant-ph].

[45] A. R. Iyengar, M. Papaleo, P. H. Siegel, J. K. Wolf,
A. Vanelli-Coralli, and G. E. Corazza, IEEE Transactions
on Information Theory 58, 2303 (2011).

https://arxiv.org/abs/1207.1443
https://arxiv.org/abs/1207.1443
https://arxiv.org/abs/1207.1443
https://doi.org/10.1103/physrevlett.127.090505
https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
https://arxiv.org/abs/https://pubs.aip.org/aip/jmp/article-pdf/43/9/4452/8171926/4452_1_online.pdf
https://arxiv.org/abs/https://pubs.aip.org/aip/jmp/article-pdf/43/9/4452/8171926/4452_1_online.pdf
https://doi.org/10.1103/PhysRevLett.129.050504
https://doi.org/10.1103/PhysRevLett.129.050504
https://doi.org/10.1109/18.910572
https://doi.org/10.1109/18.910572
https://doi.org/10.1103/PhysRevResearch.2.043423
https://doi.org/10.1103/PhysRevResearch.2.043423
https://doi.org/10.1109/ACCESS.2021.3089829
https://doi.org/10.22331/q-2021-10-14-562
https://doi.org/10.22331/q-2021-11-22-585
https://doi.org/10.22331/q-2024-10-10-1498
https://arxiv.org/abs/2409.01440
https://arxiv.org/abs/2409.01440
https://arxiv.org/abs/2409.01440
https://doi.org/10.1103/prxquantum.5.020349
https://arxiv.org/abs/2311.03307
https://arxiv.org/abs/2311.03307
https://arxiv.org/abs/2311.03307

45

Logical Gate Depth bound

In-block CNOT operator g1 ⊗ g2 for g1, g2 ∈ GLr(2) 0 (qubit relabelling)

Cross-block CNOT operator

(
I g1 ⊗ g2

0 I

)
∈ GL2r2(2) for g1, g2 ∈ GLr(2) 1

Arbitrary cross-block CNOT operator

(
I M

0 I

)
∈ GL2r2(2) for M ∈Mr2(2) r2 + r + 4

Depth-1 cross-block CNOT operator on two code blocks 8r + 18

Arbitrary in-block CNOT operator A ∈ GLr2(2) r2 + r + 4

CNOTi,j for qubits i, j in distinct or non-distinct code blocks 4

Arbitrary 2-block CNOT operator (modulo logical permutation) 3(r2 + r + 4)

Arbitrary b-block upper-triangular CNOT operator (b− 1)(r2 + r + 4) + r(r + 1)/2 + 6

Arbitrary b-block CNOT operator (modulo logical permutation) (2b− 1)(r2 + r + 4)

Table II. Depth bounds for logical CNOT operators in SHY PS(r). Recall that a CNOT operator on b blocks of r2 logical
qubits is determined by matrices in GLbr2(2) - we give these matrices above where appropriate.

Logical Gate Depth bound

In-block diagonal generator B = (g ⊗ gT)τr for g ∈ GLr(2) 1

Single logical S gate r ≥ 4 (r = 3) 6, (9)

CZi,j for qubits i, j in distinct or non-distinct code blocks 4

Arbitrary in-block diagonal operator r ≥ 4 (r = 3) r2 + 5r + 2, (r2 + 8r + 2)

Arbitrary cross-block CZ circuit on b blocks (b− 1)(r2 + r + 4)

Depth-1 cross-block CZ circuit on two code blocks 8r + 18

Arbitrary b-block diagonal circuit r ≥ 4 (r = 3) br2 + r(b+ 4) + (4b− 2), (16b+ 25)

Table III. Depth bounds for logical diagonal operators in SHY PS(r). Recall that a diagonal operator on b blocks of r2 logical
qubits is determined (modulo Pauli) by a symmetric matrix B ∈ SYMbr2(2) - we give these matrices where appropriate. Note
that τr is the permutation matrix exchanging qubit labels (i, j)←→ (j, i).

Logical Gate Depth bound

All qubit Hadamard (modulo logical SWAP) 4

All qubit Hadamard 3r + 10

Single qubit Hadamard gate r ≥ 4 (r = 3) 8, (11)

Arbitrary Hadamard circuit 21r + 15

Arbitrary in-block permutation 3r + 6

Arbitrary permutation 36r2 + 3r + 6

Table IV. Depth of logical Hadamard-SWAP operators in SHY PS(r)

Parameters SHYPS [49, 9, 4] SHYPS [49, 9, 4] SHYPS [49, 9, 4]

Sliding Window (2,1) (3,1) (4,1)

BP Iterations 500 1000 2000

MS Dynamic Scaling Factor 1
250

1
250

1
250

Parameters SHYPS [225, 16, 8] SHYPS [225, 16, 8] SHYPS [225, 16, 8]

Sliding Window (2,1) (3,1) (4,1)

BP Iterations 500 1000 2000

MS Dynamic Scaling Factor 1
250

1
250

1
250

Table V. Decoding parameters for memory simulations

46

Parameters SHYPS [49, 9, 4]

Sliding Window (3,1)

BP Iterations 1500

MS Dynamic Scaling Factor 1
250

Table VI. Decoding parameters for Clifford Simulation

	Computing Efficiently in QLDPC Codes
	Abstract
	Introduction
	Logic in QLDPC Codes
	Compiling and Costs
	Clifford operators and automorphisms
	Symplectic representations
	Code automorphisms

	Code constructions and logical operators
	Performance of the SHYPS Code
	Memory Simulation
	Clifford Simulation

	Conclusion
	References
	End notes
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

	Contents
	Mathematical preliminaries and code constructions
	Review of Paulis and Cliffords
	Subsystem codes
	Automorphisms of codes
	Classical simplex codes
	Subsystem hypergraph product simplex (SHYPS) codes
	Lifting classical automorphisms

	CNOT operators in SHYPS codes
	Generating cross-block CNOT operators
	Arbitrary CNOT operators

	Diagonal operators in SHYPS codes
	Lifting classical automorphisms
	Generating in-block operators
	Compiling specific operators
	Multi-block diagonal Cliffords

	Hadamard-SWAP operators in SHYPS codes
	In-block permutations
	Multi-block permutations
	Hadamard circuits

	SHYPS compiling summary
	Fault-tolerant demonstration
	Numerical simulations
	Memory simulations
	Detector considerations
	Simulations of logical operation
	Detector discovery for logical circuits

	Syndrome extraction circuits
	Circuit fault analysis
	Scheduling SE for SHYPS codes
	Structure-based scheduling
	Coloration circuit approach
	Depth optimality of SE circuits
	Stabilizer aggregation for SHYPS codes

	Monte Carlo simulation data
	Uncertainties of simulation results
	Normalizing and scaling logical error rates

	Decoding details
	BPOSD
	BPOSD parameters
	Sliding window decoder

	Additional simulation results

	References

